File size: 25,355 Bytes
14e8d5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
---
language:
- id
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:10000
- loss:SoftmaxLoss
base_model: indobenchmark/indobert-base-p2
datasets:
- afaji/indonli
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
widget:
- source_sentence: Dengan meniupnya, perawat bisa segera mengerti bahwa ia dipanggil
    dan akan segera datang menolong.
  sentences:
  - 38% pemilih tidak mendukung meninggalkan Uni Eropa.
  - Perawat mengerti bahwa ia dipanggil dan akan segera datang menolong.
  - Dari fakta-fakta tersebut dapat diindikasikan pembakaran gereja dilakukan secara
    sengaja.
- source_sentence: Kebudayaan jawa lainnya adalah Sintren, Sintren adalan kesenian
    tradisional masyarakat Jawa, khususnya Pekalongan.
  sentences:
  - Sintren merupakan kesenian tradisional masyarakat Jawa yang ada sejak zaman kerajaan.
  - Klinik ini melarang pasiennya menghisap ganja.
  - Perubahan dunia saat itu dipengaruhi oleh Krisis Suez.
- source_sentence: Saat ini, sudah empat wanita yang mengaku dilecehkan. Yang terakhir
    ialah aktris Rose McGowan, dengan tuntutan pemerkosaan.
  sentences:
  - Di Maroko Tenggara tidak pernah ada fosil vertebrata.
  - Tidak ada yang dilecehkan.
  - Ganja tidak boleh diberikan kepada pasien penyakit apapun.
- source_sentence: Peperangan di tanah berubah dari lini depan statis Perang Dunia
    I menjadi peningkatan mobilitas dan persenjataan gabungan.
  sentences:
  - Peperangan di tanah awalnya berbentuk lini depan statis Perang Dunia I.
  - Ia berdarah keturunan India.
  - Kesultanan Yogyakarta berasal dari Kerajaan Mataram.
- source_sentence: Bahan dasar Dalgona Coffee hanya tiga jenis yaitu bubuk kopi, gula,
    dan air. Banyak resep beredar dengan komposisi dua sendok bubuk kopi, dua sendok
    gula, dan dua sendok air panas.
  sentences:
  - Semua orang di dunia menyukai air putih.
  - Jutting berada di Pengadilan Tinggi Hongkong 5 tahun kemudian.
  - Resep komposisi Dalgona Coffee adalah 2 sendok bubuk kopi.
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer based on indobenchmark/indobert-base-p2
  results:
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts dev
      type: sts-dev
    metrics:
    - type: pearson_cosine
      value: -0.4766226820019628
      name: Pearson Cosine
    - type: spearman_cosine
      value: -0.4665046363205431
      name: Spearman Cosine
    - type: pearson_manhattan
      value: -0.46278474137062864
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: -0.46103038796182516
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: -0.4732431317820645
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: -0.4673139200425683
      name: Spearman Euclidean
    - type: pearson_dot
      value: -0.4679129419420587
      name: Pearson Dot
    - type: spearman_dot
      value: -0.4577457216480116
      name: Spearman Dot
    - type: pearson_max
      value: -0.46278474137062864
      name: Pearson Max
    - type: spearman_max
      value: -0.4577457216480116
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test
      type: sts-test
    metrics:
    - type: pearson_cosine
      value: -0.20358655624514646
      name: Pearson Cosine
    - type: spearman_cosine
      value: -0.20098073423584242
      name: Spearman Cosine
    - type: pearson_manhattan
      value: -0.16857445418120778
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: -0.18417229002858432
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: -0.17954736289799147
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: -0.1907831094006202
      name: Spearman Euclidean
    - type: pearson_dot
      value: -0.2158654981443921
      name: Pearson Dot
    - type: spearman_dot
      value: -0.2141585054513143
      name: Spearman Dot
    - type: pearson_max
      value: -0.16857445418120778
      name: Pearson Max
    - type: spearman_max
      value: -0.18417229002858432
      name: Spearman Max
---

# SentenceTransformer based on indobenchmark/indobert-base-p2

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [indobenchmark/indobert-base-p2](https://huggingface.co/indobenchmark/indobert-base-p2) on the [afaji/indonli](https://huggingface.co/datasets/afaji/indonli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [indobenchmark/indobert-base-p2](https://huggingface.co/indobenchmark/indobert-base-p2) <!-- at revision 94b4e0a82081fa57f227fcc2024d1ea89b57ac1f -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - [afaji/indonli](https://huggingface.co/datasets/afaji/indonli)
- **Language:** id
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("cassador/indobert-base-p2-nli-v1")
# Run inference
sentences = [
    'Bahan dasar Dalgona Coffee hanya tiga jenis yaitu bubuk kopi, gula, dan air. Banyak resep beredar dengan komposisi dua sendok bubuk kopi, dua sendok gula, dan dua sendok air panas.',
    'Resep komposisi Dalgona Coffee adalah 2 sendok bubuk kopi.',
    'Jutting berada di Pengadilan Tinggi Hongkong 5 tahun kemudian.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Semantic Similarity
* Dataset: `sts-dev`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value       |
|:--------------------|:------------|
| pearson_cosine      | -0.4766     |
| **spearman_cosine** | **-0.4665** |
| pearson_manhattan   | -0.4628     |
| spearman_manhattan  | -0.461      |
| pearson_euclidean   | -0.4732     |
| spearman_euclidean  | -0.4673     |
| pearson_dot         | -0.4679     |
| spearman_dot        | -0.4577     |
| pearson_max         | -0.4628     |
| spearman_max        | -0.4577     |

#### Semantic Similarity
* Dataset: `sts-test`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | -0.2036    |
| **spearman_cosine** | **-0.201** |
| pearson_manhattan   | -0.1686    |
| spearman_manhattan  | -0.1842    |
| pearson_euclidean   | -0.1795    |
| spearman_euclidean  | -0.1908    |
| pearson_dot         | -0.2159    |
| spearman_dot        | -0.2142    |
| pearson_max         | -0.1686    |
| spearman_max        | -0.1842    |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### afaji/indonli

* Dataset: [afaji/indonli](https://huggingface.co/datasets/afaji/indonli)
* Size: 10,000 training samples
* Columns: <code>premise</code>, <code>hypothesis</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | premise                                                                             | hypothesis                                                                        | label                                                              |
  |:--------|:------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------|
  | type    | string                                                                              | string                                                                            | int                                                                |
  | details | <ul><li>min: 12 tokens</li><li>mean: 29.73 tokens</li><li>max: 179 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 11.93 tokens</li><li>max: 35 tokens</li></ul> | <ul><li>0: ~31.40%</li><li>1: ~34.60%</li><li>2: ~34.00%</li></ul> |
* Samples:
  | premise                                                                                                                                                    | hypothesis                                                               | label          |
  |:-----------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------|:---------------|
  | <code>Presiden Joko Widodo (Jokowi) menyampaikan prediksi bahwa wabah virus Corona (COVID-19) di Indonesia akan selesai akhir tahun ini.</code>            | <code>Prediksi akhir wabah tidak disampaikan Jokowi.</code>              | <code>2</code> |
  | <code>Meski biasanya hanya digunakan di fasilitas kesehatan, saat ini masker dan sarung tangan sekali pakai banyak dipakai di tingkat rumah tangga.</code> | <code>Masker sekali pakai banyak dipakai di tingkat rumah tangga.</code> | <code>0</code> |
  | <code>Data dari Nielsen Music mencatat, "Joanne" telah terjual 201 ribu kopi di akhir minggu ini, seperti dilansir aceshowbiz.com.</code>                  | <code>Nielsen Music mencatat pada akhir minggu ini.</code>               | <code>1</code> |
* Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)

### Evaluation Dataset

#### afaji/indonli

* Dataset: [afaji/indonli](https://huggingface.co/datasets/afaji/indonli)
* Size: 1,000 evaluation samples
* Columns: <code>premise</code>, <code>hypothesis</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | premise                                                                            | hypothesis                                                                        | label                                                              |
  |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                            | int                                                                |
  | details | <ul><li>min: 9 tokens</li><li>mean: 28.09 tokens</li><li>max: 179 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.01 tokens</li><li>max: 24 tokens</li></ul> | <ul><li>0: ~37.00%</li><li>1: ~29.20%</li><li>2: ~33.80%</li></ul> |
* Samples:
  | premise                                                                                                                                                                                                                                                                        | hypothesis                                                                                                  | label          |
  |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------|:---------------|
  | <code>Manuskrip tersebut berisi tiga catatan yang menceritakan bagaimana peristiwa jatuhnya meteorit serta laporan kematian akibat kejadian tersebut seperti dilansir dari Science Alert, Sabtu (25/4/2020).</code>                                                            | <code>Manuskrip tersebut tidak mencatat laporan kematian.</code>                                            | <code>2</code> |
  | <code>Dilansir dari Business Insider, menurut observasi dari Mauna Loa Observatory di Hawaii pada karbon dioksida (CO2) di level mencapai 410 ppm tidak langsung memberikan efek pada pernapasan, karena tubuh manusia juga masih membutuhkan CO2 dalam kadar tertentu.</code> | <code>Tidak ada observasi yang pernah dilansir oleh Business Insider.</code>                                | <code>2</code> |
  | <code>Perekonomian Jakarta terutama ditunjang oleh sektor perdagangan, jasa, properti, industri kreatif, dan keuangan.</code>                                                                                                                                                  | <code>Sektor jasa memberi pengaruh lebih besar daripada industri kreatif dalam perekonomian Jakarta.</code> | <code>1</code> |
* Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `warmup_ratio`: 0.1
- `fp16`: True

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 8
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch  | Step | Training Loss | loss   | sts-dev_spearman_cosine | sts-test_spearman_cosine |
|:------:|:----:|:-------------:|:------:|:-----------------------:|:------------------------:|
| 0      | 0    | -             | -      | -0.0893                 | -                        |
| 0.08   | 100  | 1.0851        | -      | -                       | -                        |
| 0.16   | 200  | 1.0163        | -      | -                       | -                        |
| 0.24   | 300  | 0.9524        | -      | -                       | -                        |
| 0.32   | 400  | 0.9257        | -      | -                       | -                        |
| 0.4    | 500  | 0.9397        | -      | -                       | -                        |
| 0.48   | 600  | 0.9125        | -      | -                       | -                        |
| 0.56   | 700  | 0.913         | -      | -                       | -                        |
| 0.64   | 800  | 0.8792        | -      | -                       | -                        |
| 0.72   | 900  | 0.932         | -      | -                       | -                        |
| 0.8    | 1000 | 0.9112        | -      | -                       | -                        |
| 0.88   | 1100 | 0.8809        | -      | -                       | -                        |
| 0.96   | 1200 | 0.8567        | -      | -                       | -                        |
| 1.0    | 1250 | -             | 0.8585 | -0.4868                 | -                        |
| 1.04   | 1300 | 0.8482        | -      | -                       | -                        |
| 1.12   | 1400 | 0.7235        | -      | -                       | -                        |
| 1.2    | 1500 | 0.714         | -      | -                       | -                        |
| 1.28   | 1600 | 0.7053        | -      | -                       | -                        |
| 1.3600 | 1700 | 0.7205        | -      | -                       | -                        |
| 1.44   | 1800 | 0.7203        | -      | -                       | -                        |
| 1.52   | 1900 | 0.6957        | -      | -                       | -                        |
| 1.6    | 2000 | 0.7271        | -      | -                       | -                        |
| 1.6800 | 2100 | 0.7302        | -      | -                       | -                        |
| 1.76   | 2200 | 0.7054        | -      | -                       | -                        |
| 1.8400 | 2300 | 0.7134        | -      | -                       | -                        |
| 1.92   | 2400 | 0.6919        | -      | -                       | -                        |
| 2.0    | 2500 | 0.7416        | 0.8465 | -0.4085                 | -                        |
| 2.08   | 2600 | 0.4955        | -      | -                       | -                        |
| 2.16   | 2700 | 0.4484        | -      | -                       | -                        |
| 2.24   | 2800 | 0.4413        | -      | -                       | -                        |
| 2.32   | 2900 | 0.4567        | -      | -                       | -                        |
| 2.4    | 3000 | 0.4889        | -      | -                       | -                        |
| 2.48   | 3100 | 0.4284        | -      | -                       | -                        |
| 2.56   | 3200 | 0.5041        | -      | -                       | -                        |
| 2.64   | 3300 | 0.4755        | -      | -                       | -                        |
| 2.7200 | 3400 | 0.4726        | -      | -                       | -                        |
| 2.8    | 3500 | 0.4656        | -      | -                       | -                        |
| 2.88   | 3600 | 0.4389        | -      | -                       | -                        |
| 2.96   | 3700 | 0.4789        | -      | -                       | -                        |
| 3.0    | 3750 | -             | 1.0011 | -0.4586                 | -                        |
| 3.04   | 3800 | 0.3492        | -      | -                       | -                        |
| 3.12   | 3900 | 0.2477        | -      | -                       | -                        |
| 3.2    | 4000 | 0.2556        | -      | -                       | -                        |
| 3.2800 | 4100 | 0.2531        | -      | -                       | -                        |
| 3.36   | 4200 | 0.2767        | -      | -                       | -                        |
| 3.44   | 4300 | 0.2665        | -      | -                       | -                        |
| 3.52   | 4400 | 0.2493        | -      | -                       | -                        |
| 3.6    | 4500 | 0.2757        | -      | -                       | -                        |
| 3.68   | 4600 | 0.2662        | -      | -                       | -                        |
| 3.76   | 4700 | 0.2666        | -      | -                       | -                        |
| 3.84   | 4800 | 0.2748        | -      | -                       | -                        |
| 3.92   | 4900 | 0.246         | -      | -                       | -                        |
| 4.0    | 5000 | 0.2411        | 1.2455 | -0.4665                 | -0.2010                  |


### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.3.0+cu121
- Accelerate: 0.31.0
- Datasets: 2.20.0
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers and SoftmaxLoss
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->