File size: 25,355 Bytes
14e8d5c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 |
---
language:
- id
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:10000
- loss:SoftmaxLoss
base_model: indobenchmark/indobert-base-p2
datasets:
- afaji/indonli
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
widget:
- source_sentence: Dengan meniupnya, perawat bisa segera mengerti bahwa ia dipanggil
dan akan segera datang menolong.
sentences:
- 38% pemilih tidak mendukung meninggalkan Uni Eropa.
- Perawat mengerti bahwa ia dipanggil dan akan segera datang menolong.
- Dari fakta-fakta tersebut dapat diindikasikan pembakaran gereja dilakukan secara
sengaja.
- source_sentence: Kebudayaan jawa lainnya adalah Sintren, Sintren adalan kesenian
tradisional masyarakat Jawa, khususnya Pekalongan.
sentences:
- Sintren merupakan kesenian tradisional masyarakat Jawa yang ada sejak zaman kerajaan.
- Klinik ini melarang pasiennya menghisap ganja.
- Perubahan dunia saat itu dipengaruhi oleh Krisis Suez.
- source_sentence: Saat ini, sudah empat wanita yang mengaku dilecehkan. Yang terakhir
ialah aktris Rose McGowan, dengan tuntutan pemerkosaan.
sentences:
- Di Maroko Tenggara tidak pernah ada fosil vertebrata.
- Tidak ada yang dilecehkan.
- Ganja tidak boleh diberikan kepada pasien penyakit apapun.
- source_sentence: Peperangan di tanah berubah dari lini depan statis Perang Dunia
I menjadi peningkatan mobilitas dan persenjataan gabungan.
sentences:
- Peperangan di tanah awalnya berbentuk lini depan statis Perang Dunia I.
- Ia berdarah keturunan India.
- Kesultanan Yogyakarta berasal dari Kerajaan Mataram.
- source_sentence: Bahan dasar Dalgona Coffee hanya tiga jenis yaitu bubuk kopi, gula,
dan air. Banyak resep beredar dengan komposisi dua sendok bubuk kopi, dua sendok
gula, dan dua sendok air panas.
sentences:
- Semua orang di dunia menyukai air putih.
- Jutting berada di Pengadilan Tinggi Hongkong 5 tahun kemudian.
- Resep komposisi Dalgona Coffee adalah 2 sendok bubuk kopi.
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer based on indobenchmark/indobert-base-p2
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev
type: sts-dev
metrics:
- type: pearson_cosine
value: -0.4766226820019628
name: Pearson Cosine
- type: spearman_cosine
value: -0.4665046363205431
name: Spearman Cosine
- type: pearson_manhattan
value: -0.46278474137062864
name: Pearson Manhattan
- type: spearman_manhattan
value: -0.46103038796182516
name: Spearman Manhattan
- type: pearson_euclidean
value: -0.4732431317820645
name: Pearson Euclidean
- type: spearman_euclidean
value: -0.4673139200425683
name: Spearman Euclidean
- type: pearson_dot
value: -0.4679129419420587
name: Pearson Dot
- type: spearman_dot
value: -0.4577457216480116
name: Spearman Dot
- type: pearson_max
value: -0.46278474137062864
name: Pearson Max
- type: spearman_max
value: -0.4577457216480116
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test
type: sts-test
metrics:
- type: pearson_cosine
value: -0.20358655624514646
name: Pearson Cosine
- type: spearman_cosine
value: -0.20098073423584242
name: Spearman Cosine
- type: pearson_manhattan
value: -0.16857445418120778
name: Pearson Manhattan
- type: spearman_manhattan
value: -0.18417229002858432
name: Spearman Manhattan
- type: pearson_euclidean
value: -0.17954736289799147
name: Pearson Euclidean
- type: spearman_euclidean
value: -0.1907831094006202
name: Spearman Euclidean
- type: pearson_dot
value: -0.2158654981443921
name: Pearson Dot
- type: spearman_dot
value: -0.2141585054513143
name: Spearman Dot
- type: pearson_max
value: -0.16857445418120778
name: Pearson Max
- type: spearman_max
value: -0.18417229002858432
name: Spearman Max
---
# SentenceTransformer based on indobenchmark/indobert-base-p2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [indobenchmark/indobert-base-p2](https://huggingface.co/indobenchmark/indobert-base-p2) on the [afaji/indonli](https://huggingface.co/datasets/afaji/indonli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [indobenchmark/indobert-base-p2](https://huggingface.co/indobenchmark/indobert-base-p2) <!-- at revision 94b4e0a82081fa57f227fcc2024d1ea89b57ac1f -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [afaji/indonli](https://huggingface.co/datasets/afaji/indonli)
- **Language:** id
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("cassador/indobert-base-p2-nli-v1")
# Run inference
sentences = [
'Bahan dasar Dalgona Coffee hanya tiga jenis yaitu bubuk kopi, gula, dan air. Banyak resep beredar dengan komposisi dua sendok bubuk kopi, dua sendok gula, dan dua sendok air panas.',
'Resep komposisi Dalgona Coffee adalah 2 sendok bubuk kopi.',
'Jutting berada di Pengadilan Tinggi Hongkong 5 tahun kemudian.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Semantic Similarity
* Dataset: `sts-dev`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:------------|
| pearson_cosine | -0.4766 |
| **spearman_cosine** | **-0.4665** |
| pearson_manhattan | -0.4628 |
| spearman_manhattan | -0.461 |
| pearson_euclidean | -0.4732 |
| spearman_euclidean | -0.4673 |
| pearson_dot | -0.4679 |
| spearman_dot | -0.4577 |
| pearson_max | -0.4628 |
| spearman_max | -0.4577 |
#### Semantic Similarity
* Dataset: `sts-test`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | -0.2036 |
| **spearman_cosine** | **-0.201** |
| pearson_manhattan | -0.1686 |
| spearman_manhattan | -0.1842 |
| pearson_euclidean | -0.1795 |
| spearman_euclidean | -0.1908 |
| pearson_dot | -0.2159 |
| spearman_dot | -0.2142 |
| pearson_max | -0.1686 |
| spearman_max | -0.1842 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### afaji/indonli
* Dataset: [afaji/indonli](https://huggingface.co/datasets/afaji/indonli)
* Size: 10,000 training samples
* Columns: <code>premise</code>, <code>hypothesis</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | premise | hypothesis | label |
|:--------|:------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------|
| type | string | string | int |
| details | <ul><li>min: 12 tokens</li><li>mean: 29.73 tokens</li><li>max: 179 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 11.93 tokens</li><li>max: 35 tokens</li></ul> | <ul><li>0: ~31.40%</li><li>1: ~34.60%</li><li>2: ~34.00%</li></ul> |
* Samples:
| premise | hypothesis | label |
|:-----------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------|:---------------|
| <code>Presiden Joko Widodo (Jokowi) menyampaikan prediksi bahwa wabah virus Corona (COVID-19) di Indonesia akan selesai akhir tahun ini.</code> | <code>Prediksi akhir wabah tidak disampaikan Jokowi.</code> | <code>2</code> |
| <code>Meski biasanya hanya digunakan di fasilitas kesehatan, saat ini masker dan sarung tangan sekali pakai banyak dipakai di tingkat rumah tangga.</code> | <code>Masker sekali pakai banyak dipakai di tingkat rumah tangga.</code> | <code>0</code> |
| <code>Data dari Nielsen Music mencatat, "Joanne" telah terjual 201 ribu kopi di akhir minggu ini, seperti dilansir aceshowbiz.com.</code> | <code>Nielsen Music mencatat pada akhir minggu ini.</code> | <code>1</code> |
* Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
### Evaluation Dataset
#### afaji/indonli
* Dataset: [afaji/indonli](https://huggingface.co/datasets/afaji/indonli)
* Size: 1,000 evaluation samples
* Columns: <code>premise</code>, <code>hypothesis</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | premise | hypothesis | label |
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------|
| type | string | string | int |
| details | <ul><li>min: 9 tokens</li><li>mean: 28.09 tokens</li><li>max: 179 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.01 tokens</li><li>max: 24 tokens</li></ul> | <ul><li>0: ~37.00%</li><li>1: ~29.20%</li><li>2: ~33.80%</li></ul> |
* Samples:
| premise | hypothesis | label |
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------|:---------------|
| <code>Manuskrip tersebut berisi tiga catatan yang menceritakan bagaimana peristiwa jatuhnya meteorit serta laporan kematian akibat kejadian tersebut seperti dilansir dari Science Alert, Sabtu (25/4/2020).</code> | <code>Manuskrip tersebut tidak mencatat laporan kematian.</code> | <code>2</code> |
| <code>Dilansir dari Business Insider, menurut observasi dari Mauna Loa Observatory di Hawaii pada karbon dioksida (CO2) di level mencapai 410 ppm tidak langsung memberikan efek pada pernapasan, karena tubuh manusia juga masih membutuhkan CO2 dalam kadar tertentu.</code> | <code>Tidak ada observasi yang pernah dilansir oleh Business Insider.</code> | <code>2</code> |
| <code>Perekonomian Jakarta terutama ditunjang oleh sektor perdagangan, jasa, properti, industri kreatif, dan keuangan.</code> | <code>Sektor jasa memberi pengaruh lebih besar daripada industri kreatif dalam perekonomian Jakarta.</code> | <code>1</code> |
* Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `warmup_ratio`: 0.1
- `fp16`: True
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 8
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | loss | sts-dev_spearman_cosine | sts-test_spearman_cosine |
|:------:|:----:|:-------------:|:------:|:-----------------------:|:------------------------:|
| 0 | 0 | - | - | -0.0893 | - |
| 0.08 | 100 | 1.0851 | - | - | - |
| 0.16 | 200 | 1.0163 | - | - | - |
| 0.24 | 300 | 0.9524 | - | - | - |
| 0.32 | 400 | 0.9257 | - | - | - |
| 0.4 | 500 | 0.9397 | - | - | - |
| 0.48 | 600 | 0.9125 | - | - | - |
| 0.56 | 700 | 0.913 | - | - | - |
| 0.64 | 800 | 0.8792 | - | - | - |
| 0.72 | 900 | 0.932 | - | - | - |
| 0.8 | 1000 | 0.9112 | - | - | - |
| 0.88 | 1100 | 0.8809 | - | - | - |
| 0.96 | 1200 | 0.8567 | - | - | - |
| 1.0 | 1250 | - | 0.8585 | -0.4868 | - |
| 1.04 | 1300 | 0.8482 | - | - | - |
| 1.12 | 1400 | 0.7235 | - | - | - |
| 1.2 | 1500 | 0.714 | - | - | - |
| 1.28 | 1600 | 0.7053 | - | - | - |
| 1.3600 | 1700 | 0.7205 | - | - | - |
| 1.44 | 1800 | 0.7203 | - | - | - |
| 1.52 | 1900 | 0.6957 | - | - | - |
| 1.6 | 2000 | 0.7271 | - | - | - |
| 1.6800 | 2100 | 0.7302 | - | - | - |
| 1.76 | 2200 | 0.7054 | - | - | - |
| 1.8400 | 2300 | 0.7134 | - | - | - |
| 1.92 | 2400 | 0.6919 | - | - | - |
| 2.0 | 2500 | 0.7416 | 0.8465 | -0.4085 | - |
| 2.08 | 2600 | 0.4955 | - | - | - |
| 2.16 | 2700 | 0.4484 | - | - | - |
| 2.24 | 2800 | 0.4413 | - | - | - |
| 2.32 | 2900 | 0.4567 | - | - | - |
| 2.4 | 3000 | 0.4889 | - | - | - |
| 2.48 | 3100 | 0.4284 | - | - | - |
| 2.56 | 3200 | 0.5041 | - | - | - |
| 2.64 | 3300 | 0.4755 | - | - | - |
| 2.7200 | 3400 | 0.4726 | - | - | - |
| 2.8 | 3500 | 0.4656 | - | - | - |
| 2.88 | 3600 | 0.4389 | - | - | - |
| 2.96 | 3700 | 0.4789 | - | - | - |
| 3.0 | 3750 | - | 1.0011 | -0.4586 | - |
| 3.04 | 3800 | 0.3492 | - | - | - |
| 3.12 | 3900 | 0.2477 | - | - | - |
| 3.2 | 4000 | 0.2556 | - | - | - |
| 3.2800 | 4100 | 0.2531 | - | - | - |
| 3.36 | 4200 | 0.2767 | - | - | - |
| 3.44 | 4300 | 0.2665 | - | - | - |
| 3.52 | 4400 | 0.2493 | - | - | - |
| 3.6 | 4500 | 0.2757 | - | - | - |
| 3.68 | 4600 | 0.2662 | - | - | - |
| 3.76 | 4700 | 0.2666 | - | - | - |
| 3.84 | 4800 | 0.2748 | - | - | - |
| 3.92 | 4900 | 0.246 | - | - | - |
| 4.0 | 5000 | 0.2411 | 1.2455 | -0.4665 | -0.2010 |
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.3.0+cu121
- Accelerate: 0.31.0
- Datasets: 2.20.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers and SoftmaxLoss
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |