add model files
Browse files- .gitignore +2 -0
- README.md +130 -3
- all_results.json +14 -0
- alphabet.json +1 -0
- config.json +106 -0
- eval.py +138 -0
- eval_results.json +9 -0
- language_model/5gram.bin +3 -0
- language_model/attrs.json +1 -0
- language_model/unigrams.txt +0 -0
- preprocessor_config.json +10 -0
- pytorch_model.bin +3 -0
- run.sh +41 -0
- run_speech_recognition_ctc.py +748 -0
- special_tokens_map.json +1 -0
- tokenizer_config.json +1 -0
- train_results.json +8 -0
- trainer_state.json +1000 -0
- training_args.bin +3 -0
- vocab.json +1 -0
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
checkpoint-*/
|
2 |
+
wandb/
|
README.md
CHANGED
@@ -1,3 +1,130 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- tr
|
4 |
+
tags:
|
5 |
+
- automatic-speech-recognition
|
6 |
+
- mozilla-foundation/common_voice_8_0
|
7 |
+
- generated_from_trainer
|
8 |
+
datasets:
|
9 |
+
- common_voice
|
10 |
+
model-index:
|
11 |
+
- name: ''
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
#
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [./checkpoint-1000](https://huggingface.co/./checkpoint-1000) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - TR dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.3282
|
23 |
+
- Wer: 0.2836
|
24 |
+
|
25 |
+
## Model description
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Intended uses & limitations
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training and evaluation data
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training procedure
|
38 |
+
|
39 |
+
### Training hyperparameters
|
40 |
+
|
41 |
+
The following hyperparameters were used during training:
|
42 |
+
- learning_rate: 0.0003
|
43 |
+
- train_batch_size: 96
|
44 |
+
- eval_batch_size: 8
|
45 |
+
- seed: 42
|
46 |
+
- gradient_accumulation_steps: 2
|
47 |
+
- total_train_batch_size: 192
|
48 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
+
- lr_scheduler_type: linear
|
50 |
+
- lr_scheduler_warmup_steps: 100
|
51 |
+
- num_epochs: 100.0
|
52 |
+
- mixed_precision_training: Native AMP
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
57 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|
|
58 |
+
| 1.0671 | 2.04 | 200 | 0.3079 | 0.2752 |
|
59 |
+
| 0.6433 | 4.08 | 400 | 0.2728 | 0.2848 |
|
60 |
+
| 0.5687 | 6.12 | 600 | 0.2882 | 0.3036 |
|
61 |
+
| 0.5355 | 8.16 | 800 | 0.2778 | 0.2920 |
|
62 |
+
| 0.5116 | 10.2 | 1000 | 0.2906 | 0.3014 |
|
63 |
+
| 0.5313 | 9.16 | 1200 | 0.2984 | 0.3273 |
|
64 |
+
| 0.4996 | 10.69 | 1400 | 0.3170 | 0.3344 |
|
65 |
+
| 0.4845 | 12.21 | 1600 | 0.3202 | 0.3634 |
|
66 |
+
| 0.5092 | 13.74 | 1800 | 0.3167 | 0.3373 |
|
67 |
+
| 0.4777 | 15.27 | 2000 | 0.3292 | 0.3386 |
|
68 |
+
| 0.4651 | 16.79 | 2200 | 0.3070 | 0.3427 |
|
69 |
+
| 0.461 | 18.32 | 2400 | 0.3149 | 0.3561 |
|
70 |
+
| 0.4481 | 19.85 | 2600 | 0.3292 | 0.3441 |
|
71 |
+
| 0.4479 | 21.37 | 2800 | 0.3142 | 0.3209 |
|
72 |
+
| 0.4305 | 22.9 | 3000 | 0.3525 | 0.3547 |
|
73 |
+
| 0.4254 | 24.43 | 3200 | 0.3414 | 0.3400 |
|
74 |
+
| 0.4066 | 25.95 | 3400 | 0.3118 | 0.3207 |
|
75 |
+
| 0.4043 | 27.48 | 3600 | 0.3418 | 0.3483 |
|
76 |
+
| 0.3985 | 29.01 | 3800 | 0.3254 | 0.3166 |
|
77 |
+
| 0.3982 | 30.53 | 4000 | 0.3306 | 0.3453 |
|
78 |
+
| 0.3929 | 32.06 | 4200 | 0.3262 | 0.3229 |
|
79 |
+
| 0.378 | 33.59 | 4400 | 0.3546 | 0.3336 |
|
80 |
+
| 0.4062 | 35.11 | 4600 | 0.3174 | 0.3457 |
|
81 |
+
| 0.3648 | 36.64 | 4800 | 0.3377 | 0.3357 |
|
82 |
+
| 0.3609 | 38.17 | 5000 | 0.3346 | 0.3520 |
|
83 |
+
| 0.3483 | 39.69 | 5200 | 0.3350 | 0.3526 |
|
84 |
+
| 0.3548 | 41.22 | 5400 | 0.3330 | 0.3406 |
|
85 |
+
| 0.3446 | 42.75 | 5600 | 0.3398 | 0.3372 |
|
86 |
+
| 0.3346 | 44.27 | 5800 | 0.3449 | 0.3288 |
|
87 |
+
| 0.3309 | 45.8 | 6000 | 0.3320 | 0.3144 |
|
88 |
+
| 0.326 | 47.33 | 6200 | 0.3400 | 0.3279 |
|
89 |
+
| 0.3189 | 48.85 | 6400 | 0.3400 | 0.3150 |
|
90 |
+
| 0.3165 | 50.38 | 6600 | 0.3359 | 0.2995 |
|
91 |
+
| 0.3132 | 51.91 | 6800 | 0.3343 | 0.3096 |
|
92 |
+
| 0.3092 | 53.44 | 7000 | 0.3224 | 0.3029 |
|
93 |
+
| 0.2995 | 54.96 | 7200 | 0.3205 | 0.2985 |
|
94 |
+
| 0.304 | 56.49 | 7400 | 0.3523 | 0.3034 |
|
95 |
+
| 0.2952 | 58.02 | 7600 | 0.3289 | 0.2934 |
|
96 |
+
| 0.2875 | 59.54 | 7800 | 0.3350 | 0.3008 |
|
97 |
+
| 0.2868 | 61.07 | 8000 | 0.3537 | 0.3227 |
|
98 |
+
| 0.2875 | 62.6 | 8200 | 0.3389 | 0.2970 |
|
99 |
+
| 0.2778 | 64.12 | 8400 | 0.3370 | 0.2960 |
|
100 |
+
| 0.2706 | 65.65 | 8600 | 0.3250 | 0.2802 |
|
101 |
+
| 0.2669 | 67.18 | 8800 | 0.3351 | 0.2903 |
|
102 |
+
| 0.2615 | 68.7 | 9000 | 0.3382 | 0.2989 |
|
103 |
+
| 0.2563 | 70.23 | 9200 | 0.3312 | 0.2975 |
|
104 |
+
| 0.2546 | 71.76 | 9400 | 0.3212 | 0.3003 |
|
105 |
+
| 0.2482 | 73.28 | 9600 | 0.3337 | 0.3091 |
|
106 |
+
| 0.2504 | 74.81 | 9800 | 0.3308 | 0.3110 |
|
107 |
+
| 0.2456 | 76.34 | 10000 | 0.3157 | 0.3118 |
|
108 |
+
| 0.2363 | 77.86 | 10200 | 0.3251 | 0.3144 |
|
109 |
+
| 0.2319 | 79.39 | 10400 | 0.3253 | 0.3038 |
|
110 |
+
| 0.2266 | 80.92 | 10600 | 0.3374 | 0.3038 |
|
111 |
+
| 0.2279 | 82.44 | 10800 | 0.3268 | 0.2964 |
|
112 |
+
| 0.2231 | 83.97 | 11000 | 0.3278 | 0.2950 |
|
113 |
+
| 0.2185 | 85.5 | 11200 | 0.3462 | 0.2981 |
|
114 |
+
| 0.2245 | 87.02 | 11400 | 0.3311 | 0.2895 |
|
115 |
+
| 0.223 | 88.55 | 11600 | 0.3325 | 0.2877 |
|
116 |
+
| 0.2121 | 90.08 | 11800 | 0.3337 | 0.2828 |
|
117 |
+
| 0.2126 | 91.6 | 12000 | 0.3325 | 0.2808 |
|
118 |
+
| 0.2027 | 93.13 | 12200 | 0.3277 | 0.2820 |
|
119 |
+
| 0.2058 | 94.66 | 12400 | 0.3308 | 0.2827 |
|
120 |
+
| 0.1991 | 96.18 | 12600 | 0.3279 | 0.2820 |
|
121 |
+
| 0.1991 | 97.71 | 12800 | 0.3300 | 0.2822 |
|
122 |
+
| 0.1986 | 99.24 | 13000 | 0.3285 | 0.2835 |
|
123 |
+
|
124 |
+
|
125 |
+
### Framework versions
|
126 |
+
|
127 |
+
- Transformers 4.17.0.dev0
|
128 |
+
- Pytorch 1.10.2+cu102
|
129 |
+
- Datasets 1.18.3
|
130 |
+
- Tokenizers 0.11.0
|
all_results.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 100.0,
|
3 |
+
"eval_loss": 0.32822880148887634,
|
4 |
+
"eval_runtime": 237.0221,
|
5 |
+
"eval_samples": 8339,
|
6 |
+
"eval_samples_per_second": 35.182,
|
7 |
+
"eval_steps_per_second": 4.4,
|
8 |
+
"eval_wer": 0.2835930339138405,
|
9 |
+
"train_loss": 0.29656382378731067,
|
10 |
+
"train_runtime": 73649.3567,
|
11 |
+
"train_samples": 25058,
|
12 |
+
"train_samples_per_second": 34.023,
|
13 |
+
"train_steps_per_second": 0.178
|
14 |
+
}
|
alphabet.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"labels": [" ", "-", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z", "\u00e2", "\u00e7", "\u00eb", "\u00ee", "\u00f6", "\u00fc", "\u011f", "\u0131", "\u015f", "\u0307", "\u2047", "" ], "is_bpe": false}
|
config.json
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "./checkpoint-1000",
|
3 |
+
"activation_dropout": 0.055,
|
4 |
+
"adapter_kernel_size": 3,
|
5 |
+
"adapter_stride": 2,
|
6 |
+
"add_adapter": false,
|
7 |
+
"apply_spec_augment": true,
|
8 |
+
"architectures": [
|
9 |
+
"Wav2Vec2ForCTC"
|
10 |
+
],
|
11 |
+
"attention_dropout": 0.1,
|
12 |
+
"bos_token_id": 1,
|
13 |
+
"classifier_proj_size": 256,
|
14 |
+
"codevector_dim": 256,
|
15 |
+
"contrastive_logits_temperature": 0.1,
|
16 |
+
"conv_bias": false,
|
17 |
+
"conv_dim": [
|
18 |
+
512,
|
19 |
+
512,
|
20 |
+
512,
|
21 |
+
512,
|
22 |
+
512,
|
23 |
+
512,
|
24 |
+
512
|
25 |
+
],
|
26 |
+
"conv_kernel": [
|
27 |
+
10,
|
28 |
+
3,
|
29 |
+
3,
|
30 |
+
3,
|
31 |
+
3,
|
32 |
+
2,
|
33 |
+
2
|
34 |
+
],
|
35 |
+
"conv_stride": [
|
36 |
+
5,
|
37 |
+
2,
|
38 |
+
2,
|
39 |
+
2,
|
40 |
+
2,
|
41 |
+
2,
|
42 |
+
2
|
43 |
+
],
|
44 |
+
"ctc_loss_reduction": "mean",
|
45 |
+
"ctc_zero_infinity": true,
|
46 |
+
"diversity_loss_weight": 0.1,
|
47 |
+
"do_stable_layer_norm": false,
|
48 |
+
"eos_token_id": 2,
|
49 |
+
"feat_extract_activation": "gelu",
|
50 |
+
"feat_extract_norm": "group",
|
51 |
+
"feat_proj_dropout": 0.04,
|
52 |
+
"feat_quantizer_dropout": 0.0,
|
53 |
+
"final_dropout": 0.0,
|
54 |
+
"hidden_act": "gelu",
|
55 |
+
"hidden_dropout": 0.047,
|
56 |
+
"hidden_size": 768,
|
57 |
+
"initializer_range": 0.02,
|
58 |
+
"intermediate_size": 3072,
|
59 |
+
"layer_norm_eps": 1e-05,
|
60 |
+
"layerdrop": 0.041,
|
61 |
+
"mask_feature_length": 64,
|
62 |
+
"mask_feature_min_masks": 0,
|
63 |
+
"mask_feature_prob": 0.25,
|
64 |
+
"mask_time_length": 10,
|
65 |
+
"mask_time_min_masks": 2,
|
66 |
+
"mask_time_prob": 0.4,
|
67 |
+
"model_type": "wav2vec2",
|
68 |
+
"num_adapter_layers": 3,
|
69 |
+
"num_attention_heads": 12,
|
70 |
+
"num_codevector_groups": 2,
|
71 |
+
"num_codevectors_per_group": 320,
|
72 |
+
"num_conv_pos_embedding_groups": 16,
|
73 |
+
"num_conv_pos_embeddings": 128,
|
74 |
+
"num_feat_extract_layers": 7,
|
75 |
+
"num_hidden_layers": 12,
|
76 |
+
"num_negatives": 100,
|
77 |
+
"output_hidden_size": 768,
|
78 |
+
"pad_token_id": 39,
|
79 |
+
"proj_codevector_dim": 256,
|
80 |
+
"tdnn_dilation": [
|
81 |
+
1,
|
82 |
+
2,
|
83 |
+
3,
|
84 |
+
1,
|
85 |
+
1
|
86 |
+
],
|
87 |
+
"tdnn_dim": [
|
88 |
+
512,
|
89 |
+
512,
|
90 |
+
512,
|
91 |
+
512,
|
92 |
+
1500
|
93 |
+
],
|
94 |
+
"tdnn_kernel": [
|
95 |
+
5,
|
96 |
+
3,
|
97 |
+
3,
|
98 |
+
1,
|
99 |
+
1
|
100 |
+
],
|
101 |
+
"torch_dtype": "float32",
|
102 |
+
"transformers_version": "4.17.0.dev0",
|
103 |
+
"use_weighted_layer_sum": false,
|
104 |
+
"vocab_size": 40,
|
105 |
+
"xvector_output_dim": 512
|
106 |
+
}
|
eval.py
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
import argparse
|
3 |
+
import re
|
4 |
+
from typing import Dict
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from datasets import Audio, Dataset, load_dataset, load_metric
|
8 |
+
|
9 |
+
from transformers import AutoFeatureExtractor, pipeline
|
10 |
+
|
11 |
+
|
12 |
+
def log_results(result: Dataset, args: Dict[str, str]):
|
13 |
+
"""DO NOT CHANGE. This function computes and logs the result metrics."""
|
14 |
+
|
15 |
+
log_outputs = args.log_outputs
|
16 |
+
dataset_id = "_".join(args.dataset.split("/") + [args.config, args.split])
|
17 |
+
|
18 |
+
# load metric
|
19 |
+
wer = load_metric("wer")
|
20 |
+
cer = load_metric("cer")
|
21 |
+
|
22 |
+
# compute metrics
|
23 |
+
wer_result = wer.compute(references=result["target"], predictions=result["prediction"])
|
24 |
+
cer_result = cer.compute(references=result["target"], predictions=result["prediction"])
|
25 |
+
|
26 |
+
# print & log results
|
27 |
+
result_str = f"WER: {wer_result}\n" f"CER: {cer_result}"
|
28 |
+
print(result_str)
|
29 |
+
|
30 |
+
with open(f"{dataset_id}_eval_results.txt", "w") as f:
|
31 |
+
f.write(result_str)
|
32 |
+
|
33 |
+
# log all results in text file. Possibly interesting for analysis
|
34 |
+
if log_outputs is not None:
|
35 |
+
pred_file = f"log_{dataset_id}_predictions.txt"
|
36 |
+
target_file = f"log_{dataset_id}_targets.txt"
|
37 |
+
|
38 |
+
with open(pred_file, "w") as p, open(target_file, "w") as t:
|
39 |
+
|
40 |
+
# mapping function to write output
|
41 |
+
def write_to_file(batch, i):
|
42 |
+
p.write(f"{i}" + "\n")
|
43 |
+
p.write(batch["prediction"] + "\n")
|
44 |
+
t.write(f"{i}" + "\n")
|
45 |
+
t.write(batch["target"] + "\n")
|
46 |
+
|
47 |
+
result.map(write_to_file, with_indices=True)
|
48 |
+
|
49 |
+
|
50 |
+
def normalize_text(text: str) -> str:
|
51 |
+
"""DO ADAPT FOR YOUR USE CASE. this function normalizes the target text."""
|
52 |
+
chars_to_ignore_regex = '[,?.!-;:""%\'"\'\'`…’»«‘“”�éû]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
|
53 |
+
|
54 |
+
text = re.sub(chars_to_ignore_regex, "", text.lower())
|
55 |
+
|
56 |
+
# In addition, we can normalize the target text, e.g. removing new lines characters etc...
|
57 |
+
# note that order is important here!
|
58 |
+
token_sequences_to_ignore = ["\n\n", "\n", " ", " "]
|
59 |
+
|
60 |
+
for t in token_sequences_to_ignore:
|
61 |
+
text = " ".join(text.split(t))
|
62 |
+
|
63 |
+
return text
|
64 |
+
|
65 |
+
|
66 |
+
def main(args):
|
67 |
+
# load dataset
|
68 |
+
dataset = load_dataset(args.dataset, args.config, data_dir=args.data_dir, split=args.split, use_auth_token=True)
|
69 |
+
|
70 |
+
# for testing: only process the first two examples as a test
|
71 |
+
# dataset = dataset.select(range(10))
|
72 |
+
|
73 |
+
# load processor
|
74 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(args.model_id)
|
75 |
+
sampling_rate = feature_extractor.sampling_rate
|
76 |
+
|
77 |
+
# resample audio
|
78 |
+
dataset = dataset.cast_column("audio", Audio(sampling_rate=sampling_rate))
|
79 |
+
|
80 |
+
# load eval pipeline
|
81 |
+
if args.device is None:
|
82 |
+
args.device = 0 if torch.cuda.is_available() else -1
|
83 |
+
asr = pipeline("automatic-speech-recognition", model=args.model_id, device=args.device)
|
84 |
+
|
85 |
+
# map function to decode audio
|
86 |
+
def map_to_pred(batch):
|
87 |
+
prediction = asr(
|
88 |
+
batch["audio"]["array"], chunk_length_s=args.chunk_length_s, stride_length_s=args.stride_length_s
|
89 |
+
)
|
90 |
+
|
91 |
+
batch["prediction"] = prediction["text"]
|
92 |
+
batch["target"] = normalize_text(batch["sentence"])
|
93 |
+
return batch
|
94 |
+
|
95 |
+
# run inference on all examples
|
96 |
+
result = dataset.map(map_to_pred, remove_columns=dataset.column_names)
|
97 |
+
|
98 |
+
# compute and log_results
|
99 |
+
# do not change function below
|
100 |
+
log_results(result, args)
|
101 |
+
|
102 |
+
|
103 |
+
if __name__ == "__main__":
|
104 |
+
parser = argparse.ArgumentParser()
|
105 |
+
|
106 |
+
parser.add_argument(
|
107 |
+
"--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers"
|
108 |
+
)
|
109 |
+
parser.add_argument(
|
110 |
+
"--dataset",
|
111 |
+
type=str,
|
112 |
+
required=True,
|
113 |
+
help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets",
|
114 |
+
)
|
115 |
+
parser.add_argument(
|
116 |
+
"--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice"
|
117 |
+
)
|
118 |
+
parser.add_argument("--data_dir", type=str, required=False, default=None,
|
119 |
+
help="The directory contains the dataset")
|
120 |
+
parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`")
|
121 |
+
parser.add_argument(
|
122 |
+
"--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds."
|
123 |
+
)
|
124 |
+
parser.add_argument(
|
125 |
+
"--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second."
|
126 |
+
)
|
127 |
+
parser.add_argument(
|
128 |
+
"--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis."
|
129 |
+
)
|
130 |
+
parser.add_argument(
|
131 |
+
"--device",
|
132 |
+
type=int,
|
133 |
+
default=None,
|
134 |
+
help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.",
|
135 |
+
)
|
136 |
+
args = parser.parse_args()
|
137 |
+
|
138 |
+
main(args)
|
eval_results.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 100.0,
|
3 |
+
"eval_loss": 0.32822880148887634,
|
4 |
+
"eval_runtime": 237.0221,
|
5 |
+
"eval_samples": 8339,
|
6 |
+
"eval_samples_per_second": 35.182,
|
7 |
+
"eval_steps_per_second": 4.4,
|
8 |
+
"eval_wer": 0.2835930339138405
|
9 |
+
}
|
language_model/5gram.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b750a609666264c2071c7fc4dec044155244557fab76815b229ffb6ee9172a0c
|
3 |
+
size 1040566788
|
language_model/attrs.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"alpha": 0.5, "beta": 1.5, "unk_score_offset": -10.0, "score_boundary": true}
|
language_model/unigrams.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
preprocessor_config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_normalize": true,
|
3 |
+
"feature_extractor_type": "Wav2Vec2FeatureExtractor",
|
4 |
+
"feature_size": 1,
|
5 |
+
"padding_side": "right",
|
6 |
+
"padding_value": 0.0,
|
7 |
+
"processor_class": "Wav2Vec2ProcessorWithLM",
|
8 |
+
"return_attention_mask": true,
|
9 |
+
"sampling_rate": 16000
|
10 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5717124172f9f489cd469aa7632b2c999b8e577db0e9c8d585434d13d424400e
|
3 |
+
size 377694615
|
run.sh
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
export WANDB_ENTITY=cahya
|
2 |
+
export WANDB_LOG_MODEL=true
|
3 |
+
export WANDB_PROJECT=xlsr-turkish
|
4 |
+
|
5 |
+
python run_speech_recognition_ctc.py \
|
6 |
+
--dataset_name="mozilla-foundation/common_voice_8_0" \
|
7 |
+
--model_name_or_path="./checkpoint-1000" \
|
8 |
+
--dataset_config_name="tr" \
|
9 |
+
--output_dir="./" \
|
10 |
+
--overwrite_output_dir \
|
11 |
+
--num_train_epochs="100" \
|
12 |
+
--per_device_train_batch_size="96" \
|
13 |
+
--per_device_eval_batch_size="8" \
|
14 |
+
--gradient_accumulation_steps="2" \
|
15 |
+
--learning_rate="3e-4" \
|
16 |
+
--warmup_steps="100" \
|
17 |
+
--length_column_name="input_length" \
|
18 |
+
--evaluation_strategy="steps" \
|
19 |
+
--text_column_name="sentence" \
|
20 |
+
--save_steps="200" \
|
21 |
+
--eval_steps="200" \
|
22 |
+
--logging_steps="200" \
|
23 |
+
--layerdrop="0.041" \
|
24 |
+
--activation_dropout="0.055" \
|
25 |
+
--attention_dropout="0.1" \
|
26 |
+
--hidden_dropout="0.047" \
|
27 |
+
--save_total_limit="3" \
|
28 |
+
--freeze_feature_encoder \
|
29 |
+
--feat_proj_dropout="0.04" \
|
30 |
+
--mask_time_prob="0.4" \
|
31 |
+
--mask_time_length="10" \
|
32 |
+
--mask_feature_prob="0.25" \
|
33 |
+
--mask_feature_length="64" \
|
34 |
+
--gradient_checkpointing \
|
35 |
+
--use_auth_token \
|
36 |
+
--fp16=true \
|
37 |
+
--group_by_length \
|
38 |
+
--do_train=true \
|
39 |
+
--do_eval=true \
|
40 |
+
--push_to_hub=false \
|
41 |
+
--chars_to_ignore , ? . ! \; \: \"\" \% \' \" \' \' \` … \’ » « \‘ '“' '”' � é û \( \)
|
run_speech_recognition_ctc.py
ADDED
@@ -0,0 +1,748 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding=utf-8
|
3 |
+
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
|
16 |
+
""" Fine-tuning a 🤗 Transformers CTC model for automatic speech recognition"""
|
17 |
+
|
18 |
+
import functools
|
19 |
+
import json
|
20 |
+
import logging
|
21 |
+
import os
|
22 |
+
import re
|
23 |
+
import sys
|
24 |
+
import warnings
|
25 |
+
from dataclasses import dataclass, field
|
26 |
+
from typing import Dict, List, Optional, Union
|
27 |
+
|
28 |
+
import datasets
|
29 |
+
import numpy as np
|
30 |
+
import torch
|
31 |
+
from datasets import DatasetDict, load_dataset, load_metric
|
32 |
+
|
33 |
+
import transformers
|
34 |
+
from transformers import (
|
35 |
+
AutoConfig,
|
36 |
+
AutoFeatureExtractor,
|
37 |
+
AutoModelForCTC,
|
38 |
+
AutoProcessor,
|
39 |
+
AutoTokenizer,
|
40 |
+
HfArgumentParser,
|
41 |
+
Trainer,
|
42 |
+
TrainingArguments,
|
43 |
+
Wav2Vec2Processor,
|
44 |
+
set_seed,
|
45 |
+
)
|
46 |
+
from transformers.trainer_utils import get_last_checkpoint, is_main_process
|
47 |
+
from transformers.utils import check_min_version
|
48 |
+
from transformers.utils.versions import require_version
|
49 |
+
|
50 |
+
|
51 |
+
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
52 |
+
check_min_version("4.17.0.dev0")
|
53 |
+
|
54 |
+
require_version("datasets>=1.13.3", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
|
55 |
+
|
56 |
+
|
57 |
+
logger = logging.getLogger(__name__)
|
58 |
+
|
59 |
+
|
60 |
+
def list_field(default=None, metadata=None):
|
61 |
+
return field(default_factory=lambda: default, metadata=metadata)
|
62 |
+
|
63 |
+
|
64 |
+
@dataclass
|
65 |
+
class ModelArguments:
|
66 |
+
"""
|
67 |
+
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
|
68 |
+
"""
|
69 |
+
|
70 |
+
model_name_or_path: str = field(
|
71 |
+
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
|
72 |
+
)
|
73 |
+
tokenizer_name_or_path: Optional[str] = field(
|
74 |
+
default=None,
|
75 |
+
metadata={"help": "Path to pretrained tokenizer or tokenizer identifier from huggingface.co/models"},
|
76 |
+
)
|
77 |
+
cache_dir: Optional[str] = field(
|
78 |
+
default=None,
|
79 |
+
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
|
80 |
+
)
|
81 |
+
freeze_feature_encoder: bool = field(
|
82 |
+
default=True, metadata={"help": "Whether to freeze the feature encoder layers of the model."}
|
83 |
+
)
|
84 |
+
attention_dropout: float = field(
|
85 |
+
default=0.0, metadata={"help": "The dropout ratio for the attention probabilities."}
|
86 |
+
)
|
87 |
+
activation_dropout: float = field(
|
88 |
+
default=0.0, metadata={"help": "The dropout ratio for activations inside the fully connected layer."}
|
89 |
+
)
|
90 |
+
feat_proj_dropout: float = field(default=0.0, metadata={"help": "The dropout ratio for the projected features."})
|
91 |
+
hidden_dropout: float = field(
|
92 |
+
default=0.0,
|
93 |
+
metadata={
|
94 |
+
"help": "The dropout probability for all fully connected layers in the embeddings, encoder, and pooler."
|
95 |
+
},
|
96 |
+
)
|
97 |
+
final_dropout: float = field(
|
98 |
+
default=0.0,
|
99 |
+
metadata={"help": "The dropout probability for the final projection layer."},
|
100 |
+
)
|
101 |
+
mask_time_prob: float = field(
|
102 |
+
default=0.05,
|
103 |
+
metadata={
|
104 |
+
"help": "Probability of each feature vector along the time axis to be chosen as the start of the vector"
|
105 |
+
"span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature"
|
106 |
+
"vectors will be masked along the time axis."
|
107 |
+
},
|
108 |
+
)
|
109 |
+
mask_time_length: int = field(
|
110 |
+
default=10,
|
111 |
+
metadata={"help": "Length of vector span to mask along the time axis."},
|
112 |
+
)
|
113 |
+
mask_feature_prob: float = field(
|
114 |
+
default=0.0,
|
115 |
+
metadata={
|
116 |
+
"help": "Probability of each feature vector along the feature axis to be chosen as the start of the vector"
|
117 |
+
"span to be masked. Approximately ``mask_feature_prob * sequence_length // mask_feature_length`` feature bins will be masked along the time axis."
|
118 |
+
},
|
119 |
+
)
|
120 |
+
mask_feature_length: int = field(
|
121 |
+
default=10,
|
122 |
+
metadata={"help": "Length of vector span to mask along the feature axis."},
|
123 |
+
)
|
124 |
+
layerdrop: float = field(default=0.0, metadata={"help": "The LayerDrop probability."})
|
125 |
+
ctc_loss_reduction: Optional[str] = field(
|
126 |
+
default="mean", metadata={"help": "The way the ctc loss should be reduced. Should be one of 'mean' or 'sum'."}
|
127 |
+
)
|
128 |
+
|
129 |
+
|
130 |
+
@dataclass
|
131 |
+
class DataTrainingArguments:
|
132 |
+
"""
|
133 |
+
Arguments pertaining to what data we are going to input our model for training and eval.
|
134 |
+
|
135 |
+
Using `HfArgumentParser` we can turn this class
|
136 |
+
into argparse arguments to be able to specify them on
|
137 |
+
the command line.
|
138 |
+
"""
|
139 |
+
|
140 |
+
dataset_name: str = field(
|
141 |
+
metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
|
142 |
+
)
|
143 |
+
dataset_config_name: str = field(
|
144 |
+
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
|
145 |
+
)
|
146 |
+
train_split_name: str = field(
|
147 |
+
default="train+validation",
|
148 |
+
metadata={
|
149 |
+
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
|
150 |
+
},
|
151 |
+
)
|
152 |
+
eval_split_name: str = field(
|
153 |
+
default="test",
|
154 |
+
metadata={
|
155 |
+
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'test'"
|
156 |
+
},
|
157 |
+
)
|
158 |
+
audio_column_name: str = field(
|
159 |
+
default="audio",
|
160 |
+
metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"},
|
161 |
+
)
|
162 |
+
text_column_name: str = field(
|
163 |
+
default="text",
|
164 |
+
metadata={"help": "The name of the dataset column containing the text data. Defaults to 'text'"},
|
165 |
+
)
|
166 |
+
overwrite_cache: bool = field(
|
167 |
+
default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
|
168 |
+
)
|
169 |
+
preprocessing_num_workers: Optional[int] = field(
|
170 |
+
default=None,
|
171 |
+
metadata={"help": "The number of processes to use for the preprocessing."},
|
172 |
+
)
|
173 |
+
max_train_samples: Optional[int] = field(
|
174 |
+
default=None,
|
175 |
+
metadata={
|
176 |
+
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
|
177 |
+
"value if set."
|
178 |
+
},
|
179 |
+
)
|
180 |
+
max_eval_samples: Optional[int] = field(
|
181 |
+
default=None,
|
182 |
+
metadata={
|
183 |
+
"help": "For debugging purposes or quicker training, truncate the number of validation examples to this "
|
184 |
+
"value if set."
|
185 |
+
},
|
186 |
+
)
|
187 |
+
chars_to_ignore: Optional[List[str]] = list_field(
|
188 |
+
default=None,
|
189 |
+
metadata={"help": "A list of characters to remove from the transcripts."},
|
190 |
+
)
|
191 |
+
eval_metrics: List[str] = list_field(
|
192 |
+
default=["wer"],
|
193 |
+
metadata={"help": "A list of metrics the model should be evaluated on. E.g. `'wer cer'`"},
|
194 |
+
)
|
195 |
+
max_duration_in_seconds: float = field(
|
196 |
+
default=20.0,
|
197 |
+
metadata={
|
198 |
+
"help": "Filter audio files that are longer than `max_duration_in_seconds` seconds to 'max_duration_in_seconds`"
|
199 |
+
},
|
200 |
+
)
|
201 |
+
min_duration_in_seconds: float = field(
|
202 |
+
default=0.0, metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"}
|
203 |
+
)
|
204 |
+
preprocessing_only: bool = field(
|
205 |
+
default=False,
|
206 |
+
metadata={
|
207 |
+
"help": "Whether to only do data preprocessing and skip training. "
|
208 |
+
"This is especially useful when data preprocessing errors out in distributed training due to timeout. "
|
209 |
+
"In this case, one should run the preprocessing in a non-distributed setup with `preprocessing_only=True` "
|
210 |
+
"so that the cached datasets can consequently be loaded in distributed training"
|
211 |
+
},
|
212 |
+
)
|
213 |
+
use_auth_token: bool = field(
|
214 |
+
default=False,
|
215 |
+
metadata={
|
216 |
+
"help": "If :obj:`True`, will use the token generated when running"
|
217 |
+
":obj:`transformers-cli login` as HTTP bearer authorization for remote files."
|
218 |
+
},
|
219 |
+
)
|
220 |
+
unk_token: str = field(
|
221 |
+
default="[UNK]",
|
222 |
+
metadata={"help": "The unk token for the tokenizer"},
|
223 |
+
)
|
224 |
+
pad_token: str = field(
|
225 |
+
default="[PAD]",
|
226 |
+
metadata={"help": "The padding token for the tokenizer"},
|
227 |
+
)
|
228 |
+
word_delimiter_token: str = field(
|
229 |
+
default="|",
|
230 |
+
metadata={"help": "The word delimiter token for the tokenizer"},
|
231 |
+
)
|
232 |
+
phoneme_language: Optional[str] = field(
|
233 |
+
default=None,
|
234 |
+
metadata={
|
235 |
+
"help": "The target language that should be used be"
|
236 |
+
" passed to the tokenizer for tokenization. Note that"
|
237 |
+
" this is only relevant if the model classifies the"
|
238 |
+
" input audio to a sequence of phoneme sequences."
|
239 |
+
},
|
240 |
+
)
|
241 |
+
|
242 |
+
|
243 |
+
@dataclass
|
244 |
+
class DataCollatorCTCWithPadding:
|
245 |
+
"""
|
246 |
+
Data collator that will dynamically pad the inputs received.
|
247 |
+
Args:
|
248 |
+
processor (:class:`~transformers.AutoProcessor`)
|
249 |
+
The processor used for proccessing the data.
|
250 |
+
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
|
251 |
+
Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
|
252 |
+
among:
|
253 |
+
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
254 |
+
sequence if provided).
|
255 |
+
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
|
256 |
+
maximum acceptable input length for the model if that argument is not provided.
|
257 |
+
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
|
258 |
+
different lengths).
|
259 |
+
max_length (:obj:`int`, `optional`):
|
260 |
+
Maximum length of the ``input_values`` of the returned list and optionally padding length (see above).
|
261 |
+
max_length_labels (:obj:`int`, `optional`):
|
262 |
+
Maximum length of the ``labels`` returned list and optionally padding length (see above).
|
263 |
+
pad_to_multiple_of (:obj:`int`, `optional`):
|
264 |
+
If set will pad the sequence to a multiple of the provided value.
|
265 |
+
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
|
266 |
+
7.5 (Volta).
|
267 |
+
"""
|
268 |
+
|
269 |
+
processor: AutoProcessor
|
270 |
+
padding: Union[bool, str] = "longest"
|
271 |
+
pad_to_multiple_of: Optional[int] = None
|
272 |
+
pad_to_multiple_of_labels: Optional[int] = None
|
273 |
+
|
274 |
+
def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
|
275 |
+
# split inputs and labels since they have to be of different lenghts and need
|
276 |
+
# different padding methods
|
277 |
+
input_features = [{"input_values": feature["input_values"]} for feature in features]
|
278 |
+
label_features = [{"input_ids": feature["labels"]} for feature in features]
|
279 |
+
|
280 |
+
batch = self.processor.pad(
|
281 |
+
input_features,
|
282 |
+
padding=self.padding,
|
283 |
+
pad_to_multiple_of=self.pad_to_multiple_of,
|
284 |
+
return_tensors="pt",
|
285 |
+
)
|
286 |
+
|
287 |
+
with self.processor.as_target_processor():
|
288 |
+
labels_batch = self.processor.pad(
|
289 |
+
label_features,
|
290 |
+
padding=self.padding,
|
291 |
+
pad_to_multiple_of=self.pad_to_multiple_of_labels,
|
292 |
+
return_tensors="pt",
|
293 |
+
)
|
294 |
+
|
295 |
+
# replace padding with -100 to ignore loss correctly
|
296 |
+
labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)
|
297 |
+
|
298 |
+
batch["labels"] = labels
|
299 |
+
|
300 |
+
return batch
|
301 |
+
|
302 |
+
|
303 |
+
def create_vocabulary_from_data(
|
304 |
+
datasets: DatasetDict,
|
305 |
+
word_delimiter_token: Optional[str] = None,
|
306 |
+
unk_token: Optional[str] = None,
|
307 |
+
pad_token: Optional[str] = None,
|
308 |
+
):
|
309 |
+
# Given training and test labels create vocabulary
|
310 |
+
def extract_all_chars(batch):
|
311 |
+
all_text = " ".join(batch["target_text"])
|
312 |
+
vocab = list(set(all_text))
|
313 |
+
return {"vocab": [vocab], "all_text": [all_text]}
|
314 |
+
|
315 |
+
print(f"dataset: {datasets}")
|
316 |
+
|
317 |
+
vocabs = datasets.map(
|
318 |
+
extract_all_chars,
|
319 |
+
batched=True,
|
320 |
+
batch_size=-1,
|
321 |
+
keep_in_memory=True,
|
322 |
+
remove_columns=datasets["train"].column_names,
|
323 |
+
)
|
324 |
+
|
325 |
+
# take union of all unique characters in each dataset
|
326 |
+
vocab_set = functools.reduce(
|
327 |
+
lambda vocab_1, vocab_2: set(vocab_1["vocab"][0]) | set(vocab_2["vocab"][0]), vocabs.values()
|
328 |
+
)
|
329 |
+
|
330 |
+
vocab_dict = {v: k for k, v in enumerate(sorted(list(vocab_set)))}
|
331 |
+
|
332 |
+
# replace white space with delimiter token
|
333 |
+
if word_delimiter_token is not None:
|
334 |
+
vocab_dict[word_delimiter_token] = vocab_dict[" "]
|
335 |
+
del vocab_dict[" "]
|
336 |
+
|
337 |
+
# add unk and pad token
|
338 |
+
if unk_token is not None:
|
339 |
+
vocab_dict[unk_token] = len(vocab_dict)
|
340 |
+
|
341 |
+
if pad_token is not None:
|
342 |
+
vocab_dict[pad_token] = len(vocab_dict)
|
343 |
+
|
344 |
+
return vocab_dict
|
345 |
+
|
346 |
+
|
347 |
+
def main():
|
348 |
+
# See all possible arguments in src/transformers/training_args.py
|
349 |
+
# or by passing the --help flag to this script.
|
350 |
+
# We now keep distinct sets of args, for a cleaner separation of concerns.
|
351 |
+
|
352 |
+
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
|
353 |
+
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
354 |
+
# If we pass only one argument to the script and it's the path to a json file,
|
355 |
+
# let's parse it to get our arguments.
|
356 |
+
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
|
357 |
+
else:
|
358 |
+
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
359 |
+
|
360 |
+
# Detecting last checkpoint.
|
361 |
+
print("training_args.do_train:", training_args.do_train)
|
362 |
+
last_checkpoint = None
|
363 |
+
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
|
364 |
+
last_checkpoint = get_last_checkpoint(training_args.output_dir)
|
365 |
+
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
|
366 |
+
raise ValueError(
|
367 |
+
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
|
368 |
+
"Use --overwrite_output_dir to overcome."
|
369 |
+
)
|
370 |
+
elif last_checkpoint is not None:
|
371 |
+
logger.info(
|
372 |
+
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
|
373 |
+
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
|
374 |
+
)
|
375 |
+
|
376 |
+
# Setup logging
|
377 |
+
logging.basicConfig(
|
378 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
379 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
380 |
+
handlers=[logging.StreamHandler(sys.stdout)],
|
381 |
+
)
|
382 |
+
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
|
383 |
+
|
384 |
+
# Log on each process the small summary:
|
385 |
+
logger.warning(
|
386 |
+
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
|
387 |
+
f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
|
388 |
+
)
|
389 |
+
# Set the verbosity to info of the Transformers logger (on main process only):
|
390 |
+
if is_main_process(training_args.local_rank):
|
391 |
+
transformers.utils.logging.set_verbosity_info()
|
392 |
+
logger.info("Training/evaluation parameters %s", training_args)
|
393 |
+
|
394 |
+
# Set seed before initializing model.
|
395 |
+
set_seed(training_args.seed)
|
396 |
+
|
397 |
+
# 1. First, let's load the dataset
|
398 |
+
raw_datasets = DatasetDict()
|
399 |
+
|
400 |
+
print("do_train:", training_args.do_train)
|
401 |
+
|
402 |
+
if training_args.do_train:
|
403 |
+
print("load train")
|
404 |
+
raw_datasets["train"] = load_dataset(
|
405 |
+
data_args.dataset_name,
|
406 |
+
data_args.dataset_config_name,
|
407 |
+
split=data_args.train_split_name,
|
408 |
+
use_auth_token=data_args.use_auth_token,
|
409 |
+
)
|
410 |
+
|
411 |
+
if data_args.audio_column_name not in raw_datasets["train"].column_names:
|
412 |
+
raise ValueError(
|
413 |
+
f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'. "
|
414 |
+
"Make sure to set `--audio_column_name` to the correct audio column - one of "
|
415 |
+
f"{', '.join(raw_datasets['train'].column_names)}."
|
416 |
+
)
|
417 |
+
|
418 |
+
if data_args.text_column_name not in raw_datasets["train"].column_names:
|
419 |
+
raise ValueError(
|
420 |
+
f"--text_column_name {data_args.text_column_name} not found in dataset '{data_args.dataset_name}'. "
|
421 |
+
"Make sure to set `--text_column_name` to the correct text column - one of "
|
422 |
+
f"{', '.join(raw_datasets['train'].column_names)}."
|
423 |
+
)
|
424 |
+
|
425 |
+
if data_args.max_train_samples is not None:
|
426 |
+
raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples))
|
427 |
+
|
428 |
+
if training_args.do_eval:
|
429 |
+
raw_datasets["eval"] = load_dataset(
|
430 |
+
data_args.dataset_name,
|
431 |
+
data_args.dataset_config_name,
|
432 |
+
split=data_args.eval_split_name,
|
433 |
+
use_auth_token=data_args.use_auth_token,
|
434 |
+
)
|
435 |
+
|
436 |
+
if data_args.max_eval_samples is not None:
|
437 |
+
raw_datasets["eval"] = raw_datasets["eval"].select(range(data_args.max_eval_samples))
|
438 |
+
|
439 |
+
# 2. We remove some special characters from the datasets
|
440 |
+
# that make training complicated and do not help in transcribing the speech
|
441 |
+
# E.g. characters, such as `,` and `.` do not really have an acoustic characteristic
|
442 |
+
# that could be easily picked up by the model
|
443 |
+
chars_to_ignore_regex = (
|
444 |
+
f'[{"".join(data_args.chars_to_ignore)}]' if data_args.chars_to_ignore is not None else None
|
445 |
+
)
|
446 |
+
print(f"char ignored: {data_args.chars_to_ignore} {chars_to_ignore_regex}")
|
447 |
+
text_column_name = data_args.text_column_name
|
448 |
+
|
449 |
+
def remove_special_characters(batch):
|
450 |
+
if chars_to_ignore_regex is not None:
|
451 |
+
batch["target_text"] = re.sub(chars_to_ignore_regex, "", batch[text_column_name]).lower() + " "
|
452 |
+
else:
|
453 |
+
batch["target_text"] = batch[text_column_name].lower() + " "
|
454 |
+
return batch
|
455 |
+
|
456 |
+
with training_args.main_process_first(desc="dataset map special characters removal"):
|
457 |
+
raw_datasets = raw_datasets.map(
|
458 |
+
remove_special_characters,
|
459 |
+
remove_columns=[text_column_name],
|
460 |
+
desc="remove special characters from datasets",
|
461 |
+
)
|
462 |
+
|
463 |
+
# save special tokens for tokenizer
|
464 |
+
word_delimiter_token = data_args.word_delimiter_token
|
465 |
+
unk_token = data_args.unk_token
|
466 |
+
pad_token = data_args.pad_token
|
467 |
+
|
468 |
+
# 3. Next, let's load the config as we might need it to create
|
469 |
+
# the tokenizer
|
470 |
+
# load config
|
471 |
+
config = AutoConfig.from_pretrained(
|
472 |
+
model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
|
473 |
+
)
|
474 |
+
|
475 |
+
print(f"config: {config}")
|
476 |
+
|
477 |
+
# 4. Next, if no tokenizer file is defined,
|
478 |
+
# we create the vocabulary of the model by extracting all unique characters from
|
479 |
+
# the training and evaluation datasets
|
480 |
+
# We need to make sure that only first rank saves vocabulary
|
481 |
+
# make sure all processes wait until vocab is created
|
482 |
+
tokenizer_name_or_path = model_args.tokenizer_name_or_path
|
483 |
+
tokenizer_kwargs = {}
|
484 |
+
if tokenizer_name_or_path is None:
|
485 |
+
# save vocab in training output dir
|
486 |
+
tokenizer_name_or_path = training_args.output_dir
|
487 |
+
|
488 |
+
vocab_file = os.path.join(tokenizer_name_or_path, "vocab.json")
|
489 |
+
|
490 |
+
with training_args.main_process_first():
|
491 |
+
if training_args.overwrite_output_dir and os.path.isfile(vocab_file):
|
492 |
+
os.remove(vocab_file)
|
493 |
+
|
494 |
+
with training_args.main_process_first(desc="dataset map vocabulary creation"):
|
495 |
+
if not os.path.isfile(vocab_file):
|
496 |
+
os.makedirs(tokenizer_name_or_path, exist_ok=True)
|
497 |
+
vocab_dict = create_vocabulary_from_data(
|
498 |
+
raw_datasets,
|
499 |
+
word_delimiter_token=word_delimiter_token,
|
500 |
+
unk_token=unk_token,
|
501 |
+
pad_token=pad_token,
|
502 |
+
)
|
503 |
+
print(f"vocab: {vocab_dict}")
|
504 |
+
|
505 |
+
# save vocab dict to be loaded into tokenizer
|
506 |
+
with open(vocab_file, "w") as file:
|
507 |
+
json.dump(vocab_dict, file)
|
508 |
+
|
509 |
+
# if tokenizer has just been created
|
510 |
+
# it is defined by `tokenizer_class` if present in config else by `model_type`
|
511 |
+
tokenizer_kwargs = {
|
512 |
+
"config": config if config.tokenizer_class is not None else None,
|
513 |
+
"tokenizer_type": config.model_type if config.tokenizer_class is None else None,
|
514 |
+
"unk_token": unk_token,
|
515 |
+
"pad_token": pad_token,
|
516 |
+
"word_delimiter_token": word_delimiter_token,
|
517 |
+
}
|
518 |
+
|
519 |
+
# 5. Now we can instantiate the feature extractor, tokenizer and model
|
520 |
+
# Note for distributed training, the .from_pretrained methods guarantee that only
|
521 |
+
# one local process can concurrently download model & vocab.
|
522 |
+
|
523 |
+
# load feature_extractor and tokenizer
|
524 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
525 |
+
tokenizer_name_or_path,
|
526 |
+
eos_token=None, bos_token=None,
|
527 |
+
use_auth_token=data_args.use_auth_token,
|
528 |
+
**tokenizer_kwargs,
|
529 |
+
)
|
530 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(
|
531 |
+
model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
|
532 |
+
)
|
533 |
+
|
534 |
+
# adapt config
|
535 |
+
config.update(
|
536 |
+
{
|
537 |
+
"feat_proj_dropout": model_args.feat_proj_dropout,
|
538 |
+
"attention_dropout": model_args.attention_dropout,
|
539 |
+
"hidden_dropout": model_args.hidden_dropout,
|
540 |
+
"final_dropout": model_args.final_dropout,
|
541 |
+
"mask_time_prob": model_args.mask_time_prob,
|
542 |
+
"mask_time_length": model_args.mask_time_length,
|
543 |
+
"mask_feature_prob": model_args.mask_feature_prob,
|
544 |
+
"mask_feature_length": model_args.mask_feature_length,
|
545 |
+
"gradient_checkpointing": training_args.gradient_checkpointing,
|
546 |
+
"layerdrop": model_args.layerdrop,
|
547 |
+
"ctc_loss_reduction": model_args.ctc_loss_reduction,
|
548 |
+
"pad_token_id": tokenizer.pad_token_id,
|
549 |
+
"vocab_size": len(tokenizer),
|
550 |
+
"activation_dropout": model_args.activation_dropout,
|
551 |
+
}
|
552 |
+
)
|
553 |
+
|
554 |
+
# create model
|
555 |
+
model = AutoModelForCTC.from_pretrained(
|
556 |
+
model_args.model_name_or_path,
|
557 |
+
cache_dir=model_args.cache_dir,
|
558 |
+
config=config,
|
559 |
+
use_auth_token=data_args.use_auth_token,
|
560 |
+
)
|
561 |
+
|
562 |
+
# freeze encoder
|
563 |
+
if model_args.freeze_feature_encoder:
|
564 |
+
model.freeze_feature_encoder()
|
565 |
+
|
566 |
+
# 6. Now we preprocess the datasets including loading the audio, resampling and normalization
|
567 |
+
# Thankfully, `datasets` takes care of automatically loading and resampling the audio,
|
568 |
+
# so that we just need to set the correct target sampling rate and normalize the input
|
569 |
+
# via the `feature_extractor`
|
570 |
+
|
571 |
+
# make sure that dataset decodes audio with correct sampling rate
|
572 |
+
dataset_sampling_rate = next(iter(raw_datasets.values())).features[data_args.audio_column_name].sampling_rate
|
573 |
+
if dataset_sampling_rate != feature_extractor.sampling_rate:
|
574 |
+
raw_datasets = raw_datasets.cast_column(
|
575 |
+
data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate)
|
576 |
+
)
|
577 |
+
|
578 |
+
# derive max & min input length for sample rate & max duration
|
579 |
+
max_input_length = data_args.max_duration_in_seconds * feature_extractor.sampling_rate
|
580 |
+
min_input_length = data_args.min_duration_in_seconds * feature_extractor.sampling_rate
|
581 |
+
audio_column_name = data_args.audio_column_name
|
582 |
+
num_workers = data_args.preprocessing_num_workers
|
583 |
+
|
584 |
+
# `phoneme_language` is only relevant if the model is fine-tuned on phoneme classification
|
585 |
+
phoneme_language = data_args.phoneme_language
|
586 |
+
|
587 |
+
# Preprocessing the datasets.
|
588 |
+
# We need to read the audio files as arrays and tokenize the targets.
|
589 |
+
def prepare_dataset(batch):
|
590 |
+
# load audio
|
591 |
+
sample = batch[audio_column_name]
|
592 |
+
|
593 |
+
inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"])
|
594 |
+
batch["input_values"] = inputs.input_values[0]
|
595 |
+
batch["input_length"] = len(batch["input_values"])
|
596 |
+
|
597 |
+
# encode targets
|
598 |
+
additional_kwargs = {}
|
599 |
+
if phoneme_language is not None:
|
600 |
+
additional_kwargs["phonemizer_lang"] = phoneme_language
|
601 |
+
|
602 |
+
batch["labels"] = tokenizer(batch["target_text"], **additional_kwargs).input_ids
|
603 |
+
return batch
|
604 |
+
|
605 |
+
with training_args.main_process_first(desc="dataset map preprocessing"):
|
606 |
+
vectorized_datasets = raw_datasets.map(
|
607 |
+
prepare_dataset,
|
608 |
+
remove_columns=next(iter(raw_datasets.values())).column_names,
|
609 |
+
num_proc=num_workers,
|
610 |
+
desc="preprocess datasets",
|
611 |
+
)
|
612 |
+
|
613 |
+
def is_audio_in_length_range(length):
|
614 |
+
return length > min_input_length and length < max_input_length
|
615 |
+
|
616 |
+
# filter data that is shorter than min_input_length
|
617 |
+
vectorized_datasets = vectorized_datasets.filter(
|
618 |
+
is_audio_in_length_range,
|
619 |
+
num_proc=num_workers,
|
620 |
+
input_columns=["input_length"],
|
621 |
+
)
|
622 |
+
|
623 |
+
# 7. Next, we can prepare the training.
|
624 |
+
# Let's use word error rate (WER) as our evaluation metric,
|
625 |
+
# instantiate a data collator and the trainer
|
626 |
+
|
627 |
+
# Define evaluation metrics during training, *i.e.* word error rate, character error rate
|
628 |
+
eval_metrics = {metric: load_metric(metric) for metric in data_args.eval_metrics}
|
629 |
+
|
630 |
+
# for large datasets it is advised to run the preprocessing on a
|
631 |
+
# single machine first with ``args.preprocessing_only`` since there will mostly likely
|
632 |
+
# be a timeout when running the script in distributed mode.
|
633 |
+
# In a second step ``args.preprocessing_only`` can then be set to `False` to load the
|
634 |
+
# cached dataset
|
635 |
+
if data_args.preprocessing_only:
|
636 |
+
logger.info(f"Data preprocessing finished. Files cached at {vectorized_datasets.cache_files}")
|
637 |
+
return
|
638 |
+
|
639 |
+
def compute_metrics(pred):
|
640 |
+
pred_logits = pred.predictions
|
641 |
+
pred_ids = np.argmax(pred_logits, axis=-1)
|
642 |
+
|
643 |
+
pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id
|
644 |
+
|
645 |
+
pred_str = tokenizer.batch_decode(pred_ids)
|
646 |
+
# we do not want to group tokens when computing the metrics
|
647 |
+
label_str = tokenizer.batch_decode(pred.label_ids, group_tokens=False)
|
648 |
+
|
649 |
+
metrics = {k: v.compute(predictions=pred_str, references=label_str) for k, v in eval_metrics.items()}
|
650 |
+
|
651 |
+
return metrics
|
652 |
+
|
653 |
+
# Now save everything to be able to create a single processor later
|
654 |
+
if is_main_process(training_args.local_rank):
|
655 |
+
# save feature extractor, tokenizer and config
|
656 |
+
feature_extractor.save_pretrained(training_args.output_dir)
|
657 |
+
tokenizer.save_pretrained(training_args.output_dir)
|
658 |
+
config.save_pretrained(training_args.output_dir)
|
659 |
+
|
660 |
+
try:
|
661 |
+
processor = AutoProcessor.from_pretrained(training_args.output_dir)
|
662 |
+
except (OSError, KeyError):
|
663 |
+
warnings.warn(
|
664 |
+
"Loading a processor from a feature extractor config that does not"
|
665 |
+
" include a `processor_class` attribute is deprecated and will be removed in v5. Please add the following "
|
666 |
+
" attribute to your `preprocessor_config.json` file to suppress this warning: "
|
667 |
+
" `'processor_class': 'Wav2Vec2Processor'`",
|
668 |
+
FutureWarning,
|
669 |
+
)
|
670 |
+
processor = Wav2Vec2Processor.from_pretrained(training_args.output_dir)
|
671 |
+
|
672 |
+
# Instantiate custom data collator
|
673 |
+
data_collator = DataCollatorCTCWithPadding(processor=processor)
|
674 |
+
|
675 |
+
# Initialize Trainer
|
676 |
+
trainer = Trainer(
|
677 |
+
model=model,
|
678 |
+
data_collator=data_collator,
|
679 |
+
args=training_args,
|
680 |
+
compute_metrics=compute_metrics,
|
681 |
+
train_dataset=vectorized_datasets["train"] if training_args.do_train else None,
|
682 |
+
eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None,
|
683 |
+
tokenizer=feature_extractor,
|
684 |
+
)
|
685 |
+
|
686 |
+
# 8. Finally, we can start training
|
687 |
+
|
688 |
+
# Training
|
689 |
+
if training_args.do_train:
|
690 |
+
|
691 |
+
# use last checkpoint if exist
|
692 |
+
if last_checkpoint is not None:
|
693 |
+
checkpoint = last_checkpoint
|
694 |
+
elif os.path.isdir(model_args.model_name_or_path):
|
695 |
+
checkpoint = model_args.model_name_or_path
|
696 |
+
else:
|
697 |
+
checkpoint = None
|
698 |
+
|
699 |
+
train_result = trainer.train(resume_from_checkpoint=checkpoint)
|
700 |
+
trainer.save_model()
|
701 |
+
|
702 |
+
metrics = train_result.metrics
|
703 |
+
max_train_samples = (
|
704 |
+
data_args.max_train_samples
|
705 |
+
if data_args.max_train_samples is not None
|
706 |
+
else len(vectorized_datasets["train"])
|
707 |
+
)
|
708 |
+
metrics["train_samples"] = min(max_train_samples, len(vectorized_datasets["train"]))
|
709 |
+
|
710 |
+
trainer.log_metrics("train", metrics)
|
711 |
+
trainer.save_metrics("train", metrics)
|
712 |
+
trainer.save_state()
|
713 |
+
|
714 |
+
# Evaluation
|
715 |
+
results = {}
|
716 |
+
if training_args.do_eval:
|
717 |
+
logger.info("*** Evaluate ***")
|
718 |
+
metrics = trainer.evaluate()
|
719 |
+
max_eval_samples = (
|
720 |
+
data_args.max_eval_samples if data_args.max_eval_samples is not None else len(vectorized_datasets["eval"])
|
721 |
+
)
|
722 |
+
metrics["eval_samples"] = min(max_eval_samples, len(vectorized_datasets["eval"]))
|
723 |
+
|
724 |
+
trainer.log_metrics("eval", metrics)
|
725 |
+
trainer.save_metrics("eval", metrics)
|
726 |
+
|
727 |
+
# Write model card and (optionally) push to hub
|
728 |
+
config_name = data_args.dataset_config_name if data_args.dataset_config_name is not None else "na"
|
729 |
+
kwargs = {
|
730 |
+
"finetuned_from": model_args.model_name_or_path,
|
731 |
+
"tasks": "speech-recognition",
|
732 |
+
"tags": ["automatic-speech-recognition", data_args.dataset_name],
|
733 |
+
"dataset_args": f"Config: {config_name}, Training split: {data_args.train_split_name}, Eval split: {data_args.eval_split_name}",
|
734 |
+
"dataset": f"{data_args.dataset_name.upper()} - {config_name.upper()}",
|
735 |
+
}
|
736 |
+
if "common_voice" in data_args.dataset_name:
|
737 |
+
kwargs["language"] = config_name
|
738 |
+
|
739 |
+
if training_args.push_to_hub:
|
740 |
+
trainer.push_to_hub(**kwargs)
|
741 |
+
else:
|
742 |
+
trainer.create_model_card(**kwargs)
|
743 |
+
|
744 |
+
return results
|
745 |
+
|
746 |
+
|
747 |
+
if __name__ == "__main__":
|
748 |
+
main()
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "pad_token": "[PAD]"}
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "bos_token": null, "eos_token": null, "pad_token": "[PAD]", "do_lower_case": false, "word_delimiter_token": "|", "special_tokens_map_file": null, "tokenizer_file": null, "name_or_path": "./", "tokenizer_class": "Wav2Vec2CTCTokenizer"}
|
train_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 100.0,
|
3 |
+
"train_loss": 0.29656382378731067,
|
4 |
+
"train_runtime": 73649.3567,
|
5 |
+
"train_samples": 25058,
|
6 |
+
"train_samples_per_second": 34.023,
|
7 |
+
"train_steps_per_second": 0.178
|
8 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,1000 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 100.0,
|
5 |
+
"global_step": 13100,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 2.04,
|
12 |
+
"learning_rate": 0.0002969690721649484,
|
13 |
+
"loss": 1.0671,
|
14 |
+
"step": 200
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"epoch": 2.04,
|
18 |
+
"eval_loss": 0.3079470694065094,
|
19 |
+
"eval_runtime": 237.7627,
|
20 |
+
"eval_samples_per_second": 35.073,
|
21 |
+
"eval_steps_per_second": 4.387,
|
22 |
+
"eval_wer": 0.2752062328139322,
|
23 |
+
"step": 200
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 4.08,
|
27 |
+
"learning_rate": 0.00029078350515463917,
|
28 |
+
"loss": 0.6433,
|
29 |
+
"step": 400
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"epoch": 4.08,
|
33 |
+
"eval_loss": 0.27281925082206726,
|
34 |
+
"eval_runtime": 238.3892,
|
35 |
+
"eval_samples_per_second": 34.981,
|
36 |
+
"eval_steps_per_second": 4.375,
|
37 |
+
"eval_wer": 0.2847616865261228,
|
38 |
+
"step": 400
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 6.12,
|
42 |
+
"learning_rate": 0.0002845979381443299,
|
43 |
+
"loss": 0.5687,
|
44 |
+
"step": 600
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 6.12,
|
48 |
+
"eval_loss": 0.28817421197891235,
|
49 |
+
"eval_runtime": 238.0657,
|
50 |
+
"eval_samples_per_second": 35.028,
|
51 |
+
"eval_steps_per_second": 4.381,
|
52 |
+
"eval_wer": 0.3036205316223648,
|
53 |
+
"step": 600
|
54 |
+
},
|
55 |
+
{
|
56 |
+
"epoch": 8.16,
|
57 |
+
"learning_rate": 0.00027841237113402056,
|
58 |
+
"loss": 0.5355,
|
59 |
+
"step": 800
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"epoch": 8.16,
|
63 |
+
"eval_loss": 0.27776163816452026,
|
64 |
+
"eval_runtime": 239.8353,
|
65 |
+
"eval_samples_per_second": 34.77,
|
66 |
+
"eval_steps_per_second": 4.349,
|
67 |
+
"eval_wer": 0.29200274977085244,
|
68 |
+
"step": 800
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"epoch": 10.2,
|
72 |
+
"learning_rate": 0.00027222680412371134,
|
73 |
+
"loss": 0.5116,
|
74 |
+
"step": 1000
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"epoch": 10.2,
|
78 |
+
"eval_loss": 0.2905969023704529,
|
79 |
+
"eval_runtime": 240.1935,
|
80 |
+
"eval_samples_per_second": 34.718,
|
81 |
+
"eval_steps_per_second": 4.342,
|
82 |
+
"eval_wer": 0.3013978001833181,
|
83 |
+
"step": 1000
|
84 |
+
},
|
85 |
+
{
|
86 |
+
"epoch": 9.16,
|
87 |
+
"learning_rate": 0.00027468461538461536,
|
88 |
+
"loss": 0.5313,
|
89 |
+
"step": 1200
|
90 |
+
},
|
91 |
+
{
|
92 |
+
"epoch": 9.16,
|
93 |
+
"eval_loss": 0.2984345555305481,
|
94 |
+
"eval_runtime": 234.3486,
|
95 |
+
"eval_samples_per_second": 35.584,
|
96 |
+
"eval_steps_per_second": 4.451,
|
97 |
+
"eval_wer": 0.327314390467461,
|
98 |
+
"step": 1200
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"epoch": 10.69,
|
102 |
+
"learning_rate": 0.00027006923076923077,
|
103 |
+
"loss": 0.4996,
|
104 |
+
"step": 1400
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"epoch": 10.69,
|
108 |
+
"eval_loss": 0.3169882297515869,
|
109 |
+
"eval_runtime": 237.8663,
|
110 |
+
"eval_samples_per_second": 35.058,
|
111 |
+
"eval_steps_per_second": 4.385,
|
112 |
+
"eval_wer": 0.3344179651695692,
|
113 |
+
"step": 1400
|
114 |
+
},
|
115 |
+
{
|
116 |
+
"epoch": 12.21,
|
117 |
+
"learning_rate": 0.0002654538461538461,
|
118 |
+
"loss": 0.4845,
|
119 |
+
"step": 1600
|
120 |
+
},
|
121 |
+
{
|
122 |
+
"epoch": 12.21,
|
123 |
+
"eval_loss": 0.32016345858573914,
|
124 |
+
"eval_runtime": 236.9291,
|
125 |
+
"eval_samples_per_second": 35.196,
|
126 |
+
"eval_steps_per_second": 4.402,
|
127 |
+
"eval_wer": 0.36338221814848765,
|
128 |
+
"step": 1600
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 13.74,
|
132 |
+
"learning_rate": 0.00026086153846153847,
|
133 |
+
"loss": 0.5092,
|
134 |
+
"step": 1800
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"epoch": 13.74,
|
138 |
+
"eval_loss": 0.3166552186012268,
|
139 |
+
"eval_runtime": 236.2482,
|
140 |
+
"eval_samples_per_second": 35.298,
|
141 |
+
"eval_steps_per_second": 4.415,
|
142 |
+
"eval_wer": 0.3373052245646196,
|
143 |
+
"step": 1800
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"epoch": 15.27,
|
147 |
+
"learning_rate": 0.0002562461538461538,
|
148 |
+
"loss": 0.4777,
|
149 |
+
"step": 2000
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 15.27,
|
153 |
+
"eval_loss": 0.32921522855758667,
|
154 |
+
"eval_runtime": 235.517,
|
155 |
+
"eval_samples_per_second": 35.407,
|
156 |
+
"eval_steps_per_second": 4.429,
|
157 |
+
"eval_wer": 0.3385655362053162,
|
158 |
+
"step": 2000
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"epoch": 16.79,
|
162 |
+
"learning_rate": 0.0002516307692307692,
|
163 |
+
"loss": 0.4651,
|
164 |
+
"step": 2200
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 16.79,
|
168 |
+
"eval_loss": 0.3070097863674164,
|
169 |
+
"eval_runtime": 238.1366,
|
170 |
+
"eval_samples_per_second": 35.018,
|
171 |
+
"eval_steps_per_second": 4.38,
|
172 |
+
"eval_wer": 0.34271310724106324,
|
173 |
+
"step": 2200
|
174 |
+
},
|
175 |
+
{
|
176 |
+
"epoch": 18.32,
|
177 |
+
"learning_rate": 0.0002470153846153846,
|
178 |
+
"loss": 0.461,
|
179 |
+
"step": 2400
|
180 |
+
},
|
181 |
+
{
|
182 |
+
"epoch": 18.32,
|
183 |
+
"eval_loss": 0.3148922026157379,
|
184 |
+
"eval_runtime": 237.1783,
|
185 |
+
"eval_samples_per_second": 35.159,
|
186 |
+
"eval_steps_per_second": 4.398,
|
187 |
+
"eval_wer": 0.35609532538955085,
|
188 |
+
"step": 2400
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"epoch": 19.85,
|
192 |
+
"learning_rate": 0.00024239999999999998,
|
193 |
+
"loss": 0.4481,
|
194 |
+
"step": 2600
|
195 |
+
},
|
196 |
+
{
|
197 |
+
"epoch": 19.85,
|
198 |
+
"eval_loss": 0.32919421792030334,
|
199 |
+
"eval_runtime": 236.0044,
|
200 |
+
"eval_samples_per_second": 35.334,
|
201 |
+
"eval_steps_per_second": 4.419,
|
202 |
+
"eval_wer": 0.34411090742438133,
|
203 |
+
"step": 2600
|
204 |
+
},
|
205 |
+
{
|
206 |
+
"epoch": 21.37,
|
207 |
+
"learning_rate": 0.00023778461538461536,
|
208 |
+
"loss": 0.4479,
|
209 |
+
"step": 2800
|
210 |
+
},
|
211 |
+
{
|
212 |
+
"epoch": 21.37,
|
213 |
+
"eval_loss": 0.3142247200012207,
|
214 |
+
"eval_runtime": 234.6363,
|
215 |
+
"eval_samples_per_second": 35.54,
|
216 |
+
"eval_steps_per_second": 4.445,
|
217 |
+
"eval_wer": 0.32089825847846015,
|
218 |
+
"step": 2800
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"epoch": 22.9,
|
222 |
+
"learning_rate": 0.00023316923076923077,
|
223 |
+
"loss": 0.4305,
|
224 |
+
"step": 3000
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"epoch": 22.9,
|
228 |
+
"eval_loss": 0.3525453507900238,
|
229 |
+
"eval_runtime": 236.821,
|
230 |
+
"eval_samples_per_second": 35.212,
|
231 |
+
"eval_steps_per_second": 4.404,
|
232 |
+
"eval_wer": 0.35467461044912924,
|
233 |
+
"step": 3000
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 24.43,
|
237 |
+
"learning_rate": 0.00022855384615384612,
|
238 |
+
"loss": 0.4254,
|
239 |
+
"step": 3200
|
240 |
+
},
|
241 |
+
{
|
242 |
+
"epoch": 24.43,
|
243 |
+
"eval_loss": 0.34136688709259033,
|
244 |
+
"eval_runtime": 235.4909,
|
245 |
+
"eval_samples_per_second": 35.411,
|
246 |
+
"eval_steps_per_second": 4.429,
|
247 |
+
"eval_wer": 0.3400091659028414,
|
248 |
+
"step": 3200
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 25.95,
|
252 |
+
"learning_rate": 0.00022393846153846153,
|
253 |
+
"loss": 0.4066,
|
254 |
+
"step": 3400
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 25.95,
|
258 |
+
"eval_loss": 0.3118491470813751,
|
259 |
+
"eval_runtime": 236.1268,
|
260 |
+
"eval_samples_per_second": 35.316,
|
261 |
+
"eval_steps_per_second": 4.417,
|
262 |
+
"eval_wer": 0.3207378551787351,
|
263 |
+
"step": 3400
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"epoch": 27.48,
|
267 |
+
"learning_rate": 0.0002193230769230769,
|
268 |
+
"loss": 0.4043,
|
269 |
+
"step": 3600
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"epoch": 27.48,
|
273 |
+
"eval_loss": 0.34181562066078186,
|
274 |
+
"eval_runtime": 235.2934,
|
275 |
+
"eval_samples_per_second": 35.441,
|
276 |
+
"eval_steps_per_second": 4.433,
|
277 |
+
"eval_wer": 0.3482584784601283,
|
278 |
+
"step": 3600
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"epoch": 29.01,
|
282 |
+
"learning_rate": 0.0002147076923076923,
|
283 |
+
"loss": 0.3985,
|
284 |
+
"step": 3800
|
285 |
+
},
|
286 |
+
{
|
287 |
+
"epoch": 29.01,
|
288 |
+
"eval_loss": 0.32544735074043274,
|
289 |
+
"eval_runtime": 236.4374,
|
290 |
+
"eval_samples_per_second": 35.269,
|
291 |
+
"eval_steps_per_second": 4.411,
|
292 |
+
"eval_wer": 0.31663611365719524,
|
293 |
+
"step": 3800
|
294 |
+
},
|
295 |
+
{
|
296 |
+
"epoch": 30.53,
|
297 |
+
"learning_rate": 0.00021009230769230766,
|
298 |
+
"loss": 0.3982,
|
299 |
+
"step": 4000
|
300 |
+
},
|
301 |
+
{
|
302 |
+
"epoch": 30.53,
|
303 |
+
"eval_loss": 0.33056947588920593,
|
304 |
+
"eval_runtime": 239.8848,
|
305 |
+
"eval_samples_per_second": 34.763,
|
306 |
+
"eval_steps_per_second": 4.348,
|
307 |
+
"eval_wer": 0.3452795600366636,
|
308 |
+
"step": 4000
|
309 |
+
},
|
310 |
+
{
|
311 |
+
"epoch": 32.06,
|
312 |
+
"learning_rate": 0.00020547692307692307,
|
313 |
+
"loss": 0.3929,
|
314 |
+
"step": 4200
|
315 |
+
},
|
316 |
+
{
|
317 |
+
"epoch": 32.06,
|
318 |
+
"eval_loss": 0.3262433409690857,
|
319 |
+
"eval_runtime": 238.1544,
|
320 |
+
"eval_samples_per_second": 35.015,
|
321 |
+
"eval_steps_per_second": 4.38,
|
322 |
+
"eval_wer": 0.3228689275893675,
|
323 |
+
"step": 4200
|
324 |
+
},
|
325 |
+
{
|
326 |
+
"epoch": 33.59,
|
327 |
+
"learning_rate": 0.00020086153846153845,
|
328 |
+
"loss": 0.378,
|
329 |
+
"step": 4400
|
330 |
+
},
|
331 |
+
{
|
332 |
+
"epoch": 33.59,
|
333 |
+
"eval_loss": 0.3545904755592346,
|
334 |
+
"eval_runtime": 234.4177,
|
335 |
+
"eval_samples_per_second": 35.573,
|
336 |
+
"eval_steps_per_second": 4.449,
|
337 |
+
"eval_wer": 0.33357011915673696,
|
338 |
+
"step": 4400
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 35.11,
|
342 |
+
"learning_rate": 0.00019624615384615385,
|
343 |
+
"loss": 0.4062,
|
344 |
+
"step": 4600
|
345 |
+
},
|
346 |
+
{
|
347 |
+
"epoch": 35.11,
|
348 |
+
"eval_loss": 0.3174082636833191,
|
349 |
+
"eval_runtime": 235.3658,
|
350 |
+
"eval_samples_per_second": 35.43,
|
351 |
+
"eval_steps_per_second": 4.431,
|
352 |
+
"eval_wer": 0.34566911090742436,
|
353 |
+
"step": 4600
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"epoch": 36.64,
|
357 |
+
"learning_rate": 0.0001916307692307692,
|
358 |
+
"loss": 0.3648,
|
359 |
+
"step": 4800
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 36.64,
|
363 |
+
"eval_loss": 0.3376729190349579,
|
364 |
+
"eval_runtime": 239.2202,
|
365 |
+
"eval_samples_per_second": 34.859,
|
366 |
+
"eval_steps_per_second": 4.36,
|
367 |
+
"eval_wer": 0.33572410632447297,
|
368 |
+
"step": 4800
|
369 |
+
},
|
370 |
+
{
|
371 |
+
"epoch": 38.17,
|
372 |
+
"learning_rate": 0.0001870153846153846,
|
373 |
+
"loss": 0.3609,
|
374 |
+
"step": 5000
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"epoch": 38.17,
|
378 |
+
"eval_loss": 0.33455467224121094,
|
379 |
+
"eval_runtime": 236.9279,
|
380 |
+
"eval_samples_per_second": 35.196,
|
381 |
+
"eval_steps_per_second": 4.402,
|
382 |
+
"eval_wer": 0.351993583868011,
|
383 |
+
"step": 5000
|
384 |
+
},
|
385 |
+
{
|
386 |
+
"epoch": 39.69,
|
387 |
+
"learning_rate": 0.0001824,
|
388 |
+
"loss": 0.3483,
|
389 |
+
"step": 5200
|
390 |
+
},
|
391 |
+
{
|
392 |
+
"epoch": 39.69,
|
393 |
+
"eval_loss": 0.3349843919277191,
|
394 |
+
"eval_runtime": 235.432,
|
395 |
+
"eval_samples_per_second": 35.42,
|
396 |
+
"eval_steps_per_second": 4.43,
|
397 |
+
"eval_wer": 0.3525893675527039,
|
398 |
+
"step": 5200
|
399 |
+
},
|
400 |
+
{
|
401 |
+
"epoch": 41.22,
|
402 |
+
"learning_rate": 0.0001777846153846154,
|
403 |
+
"loss": 0.3548,
|
404 |
+
"step": 5400
|
405 |
+
},
|
406 |
+
{
|
407 |
+
"epoch": 41.22,
|
408 |
+
"eval_loss": 0.33302220702171326,
|
409 |
+
"eval_runtime": 237.3922,
|
410 |
+
"eval_samples_per_second": 35.128,
|
411 |
+
"eval_steps_per_second": 4.394,
|
412 |
+
"eval_wer": 0.34062786434463793,
|
413 |
+
"step": 5400
|
414 |
+
},
|
415 |
+
{
|
416 |
+
"epoch": 42.75,
|
417 |
+
"learning_rate": 0.00017316923076923075,
|
418 |
+
"loss": 0.3446,
|
419 |
+
"step": 5600
|
420 |
+
},
|
421 |
+
{
|
422 |
+
"epoch": 42.75,
|
423 |
+
"eval_loss": 0.3398281931877136,
|
424 |
+
"eval_runtime": 236.2326,
|
425 |
+
"eval_samples_per_second": 35.3,
|
426 |
+
"eval_steps_per_second": 4.415,
|
427 |
+
"eval_wer": 0.3372135655362053,
|
428 |
+
"step": 5600
|
429 |
+
},
|
430 |
+
{
|
431 |
+
"epoch": 44.27,
|
432 |
+
"learning_rate": 0.00016855384615384615,
|
433 |
+
"loss": 0.3346,
|
434 |
+
"step": 5800
|
435 |
+
},
|
436 |
+
{
|
437 |
+
"epoch": 44.27,
|
438 |
+
"eval_loss": 0.34486979246139526,
|
439 |
+
"eval_runtime": 236.4721,
|
440 |
+
"eval_samples_per_second": 35.264,
|
441 |
+
"eval_steps_per_second": 4.411,
|
442 |
+
"eval_wer": 0.3287809349220898,
|
443 |
+
"step": 5800
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 45.8,
|
447 |
+
"learning_rate": 0.00016393846153846153,
|
448 |
+
"loss": 0.3309,
|
449 |
+
"step": 6000
|
450 |
+
},
|
451 |
+
{
|
452 |
+
"epoch": 45.8,
|
453 |
+
"eval_loss": 0.3319507837295532,
|
454 |
+
"eval_runtime": 236.6263,
|
455 |
+
"eval_samples_per_second": 35.241,
|
456 |
+
"eval_steps_per_second": 4.408,
|
457 |
+
"eval_wer": 0.31439046746104493,
|
458 |
+
"step": 6000
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"epoch": 47.33,
|
462 |
+
"learning_rate": 0.0001593230769230769,
|
463 |
+
"loss": 0.326,
|
464 |
+
"step": 6200
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 47.33,
|
468 |
+
"eval_loss": 0.3399747312068939,
|
469 |
+
"eval_runtime": 236.0765,
|
470 |
+
"eval_samples_per_second": 35.323,
|
471 |
+
"eval_steps_per_second": 4.418,
|
472 |
+
"eval_wer": 0.32786434463794684,
|
473 |
+
"step": 6200
|
474 |
+
},
|
475 |
+
{
|
476 |
+
"epoch": 48.85,
|
477 |
+
"learning_rate": 0.0001547076923076923,
|
478 |
+
"loss": 0.3189,
|
479 |
+
"step": 6400
|
480 |
+
},
|
481 |
+
{
|
482 |
+
"epoch": 48.85,
|
483 |
+
"eval_loss": 0.3399554491043091,
|
484 |
+
"eval_runtime": 236.2028,
|
485 |
+
"eval_samples_per_second": 35.304,
|
486 |
+
"eval_steps_per_second": 4.416,
|
487 |
+
"eval_wer": 0.31500916590284145,
|
488 |
+
"step": 6400
|
489 |
+
},
|
490 |
+
{
|
491 |
+
"epoch": 50.38,
|
492 |
+
"learning_rate": 0.0001500923076923077,
|
493 |
+
"loss": 0.3165,
|
494 |
+
"step": 6600
|
495 |
+
},
|
496 |
+
{
|
497 |
+
"epoch": 50.38,
|
498 |
+
"eval_loss": 0.3359447121620178,
|
499 |
+
"eval_runtime": 235.0525,
|
500 |
+
"eval_samples_per_second": 35.477,
|
501 |
+
"eval_steps_per_second": 4.437,
|
502 |
+
"eval_wer": 0.29945004582951423,
|
503 |
+
"step": 6600
|
504 |
+
},
|
505 |
+
{
|
506 |
+
"epoch": 51.91,
|
507 |
+
"learning_rate": 0.00014547692307692305,
|
508 |
+
"loss": 0.3132,
|
509 |
+
"step": 6800
|
510 |
+
},
|
511 |
+
{
|
512 |
+
"epoch": 51.91,
|
513 |
+
"eval_loss": 0.3342697024345398,
|
514 |
+
"eval_runtime": 235.4774,
|
515 |
+
"eval_samples_per_second": 35.413,
|
516 |
+
"eval_steps_per_second": 4.429,
|
517 |
+
"eval_wer": 0.3095554537121907,
|
518 |
+
"step": 6800
|
519 |
+
},
|
520 |
+
{
|
521 |
+
"epoch": 53.44,
|
522 |
+
"learning_rate": 0.00014086153846153845,
|
523 |
+
"loss": 0.3092,
|
524 |
+
"step": 7000
|
525 |
+
},
|
526 |
+
{
|
527 |
+
"epoch": 53.44,
|
528 |
+
"eval_loss": 0.3224042057991028,
|
529 |
+
"eval_runtime": 237.4291,
|
530 |
+
"eval_samples_per_second": 35.122,
|
531 |
+
"eval_steps_per_second": 4.393,
|
532 |
+
"eval_wer": 0.302910174152154,
|
533 |
+
"step": 7000
|
534 |
+
},
|
535 |
+
{
|
536 |
+
"epoch": 54.96,
|
537 |
+
"learning_rate": 0.00013624615384615383,
|
538 |
+
"loss": 0.2995,
|
539 |
+
"step": 7200
|
540 |
+
},
|
541 |
+
{
|
542 |
+
"epoch": 54.96,
|
543 |
+
"eval_loss": 0.3204595744609833,
|
544 |
+
"eval_runtime": 236.2646,
|
545 |
+
"eval_samples_per_second": 35.295,
|
546 |
+
"eval_steps_per_second": 4.415,
|
547 |
+
"eval_wer": 0.29851054078826766,
|
548 |
+
"step": 7200
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 56.49,
|
552 |
+
"learning_rate": 0.0001316307692307692,
|
553 |
+
"loss": 0.304,
|
554 |
+
"step": 7400
|
555 |
+
},
|
556 |
+
{
|
557 |
+
"epoch": 56.49,
|
558 |
+
"eval_loss": 0.35227909684181213,
|
559 |
+
"eval_runtime": 236.3256,
|
560 |
+
"eval_samples_per_second": 35.286,
|
561 |
+
"eval_steps_per_second": 4.413,
|
562 |
+
"eval_wer": 0.30339138405132904,
|
563 |
+
"step": 7400
|
564 |
+
},
|
565 |
+
{
|
566 |
+
"epoch": 58.02,
|
567 |
+
"learning_rate": 0.0001270153846153846,
|
568 |
+
"loss": 0.2952,
|
569 |
+
"step": 7600
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 58.02,
|
573 |
+
"eval_loss": 0.3288583755493164,
|
574 |
+
"eval_runtime": 238.857,
|
575 |
+
"eval_samples_per_second": 34.912,
|
576 |
+
"eval_steps_per_second": 4.367,
|
577 |
+
"eval_wer": 0.2934005499541705,
|
578 |
+
"step": 7600
|
579 |
+
},
|
580 |
+
{
|
581 |
+
"epoch": 59.54,
|
582 |
+
"learning_rate": 0.0001224,
|
583 |
+
"loss": 0.2875,
|
584 |
+
"step": 7800
|
585 |
+
},
|
586 |
+
{
|
587 |
+
"epoch": 59.54,
|
588 |
+
"eval_loss": 0.335005521774292,
|
589 |
+
"eval_runtime": 236.8029,
|
590 |
+
"eval_samples_per_second": 35.215,
|
591 |
+
"eval_steps_per_second": 4.405,
|
592 |
+
"eval_wer": 0.3008020164986251,
|
593 |
+
"step": 7800
|
594 |
+
},
|
595 |
+
{
|
596 |
+
"epoch": 61.07,
|
597 |
+
"learning_rate": 0.00011778461538461537,
|
598 |
+
"loss": 0.2868,
|
599 |
+
"step": 8000
|
600 |
+
},
|
601 |
+
{
|
602 |
+
"epoch": 61.07,
|
603 |
+
"eval_loss": 0.3537150025367737,
|
604 |
+
"eval_runtime": 236.5754,
|
605 |
+
"eval_samples_per_second": 35.249,
|
606 |
+
"eval_steps_per_second": 4.409,
|
607 |
+
"eval_wer": 0.3227314390467461,
|
608 |
+
"step": 8000
|
609 |
+
},
|
610 |
+
{
|
611 |
+
"epoch": 62.6,
|
612 |
+
"learning_rate": 0.00011316923076923076,
|
613 |
+
"loss": 0.2875,
|
614 |
+
"step": 8200
|
615 |
+
},
|
616 |
+
{
|
617 |
+
"epoch": 62.6,
|
618 |
+
"eval_loss": 0.3389277756214142,
|
619 |
+
"eval_runtime": 234.9228,
|
620 |
+
"eval_samples_per_second": 35.497,
|
621 |
+
"eval_steps_per_second": 4.44,
|
622 |
+
"eval_wer": 0.29704399633363887,
|
623 |
+
"step": 8200
|
624 |
+
},
|
625 |
+
{
|
626 |
+
"epoch": 64.12,
|
627 |
+
"learning_rate": 0.00010855384615384616,
|
628 |
+
"loss": 0.2778,
|
629 |
+
"step": 8400
|
630 |
+
},
|
631 |
+
{
|
632 |
+
"epoch": 64.12,
|
633 |
+
"eval_loss": 0.33703726530075073,
|
634 |
+
"eval_runtime": 234.6165,
|
635 |
+
"eval_samples_per_second": 35.543,
|
636 |
+
"eval_steps_per_second": 4.446,
|
637 |
+
"eval_wer": 0.29596700274977084,
|
638 |
+
"step": 8400
|
639 |
+
},
|
640 |
+
{
|
641 |
+
"epoch": 65.65,
|
642 |
+
"learning_rate": 0.00010393846153846154,
|
643 |
+
"loss": 0.2706,
|
644 |
+
"step": 8600
|
645 |
+
},
|
646 |
+
{
|
647 |
+
"epoch": 65.65,
|
648 |
+
"eval_loss": 0.32503727078437805,
|
649 |
+
"eval_runtime": 234.7831,
|
650 |
+
"eval_samples_per_second": 35.518,
|
651 |
+
"eval_steps_per_second": 4.442,
|
652 |
+
"eval_wer": 0.28015582034830433,
|
653 |
+
"step": 8600
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"epoch": 67.18,
|
657 |
+
"learning_rate": 9.934615384615383e-05,
|
658 |
+
"loss": 0.2669,
|
659 |
+
"step": 8800
|
660 |
+
},
|
661 |
+
{
|
662 |
+
"epoch": 67.18,
|
663 |
+
"eval_loss": 0.335059255361557,
|
664 |
+
"eval_runtime": 234.788,
|
665 |
+
"eval_samples_per_second": 35.517,
|
666 |
+
"eval_steps_per_second": 4.442,
|
667 |
+
"eval_wer": 0.2902841429880843,
|
668 |
+
"step": 8800
|
669 |
+
},
|
670 |
+
{
|
671 |
+
"epoch": 68.7,
|
672 |
+
"learning_rate": 9.473076923076922e-05,
|
673 |
+
"loss": 0.2615,
|
674 |
+
"step": 9000
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 68.7,
|
678 |
+
"eval_loss": 0.3381515145301819,
|
679 |
+
"eval_runtime": 236.5391,
|
680 |
+
"eval_samples_per_second": 35.254,
|
681 |
+
"eval_steps_per_second": 4.409,
|
682 |
+
"eval_wer": 0.29885426214482125,
|
683 |
+
"step": 9000
|
684 |
+
},
|
685 |
+
{
|
686 |
+
"epoch": 70.23,
|
687 |
+
"learning_rate": 9.01153846153846e-05,
|
688 |
+
"loss": 0.2563,
|
689 |
+
"step": 9200
|
690 |
+
},
|
691 |
+
{
|
692 |
+
"epoch": 70.23,
|
693 |
+
"eval_loss": 0.3312215507030487,
|
694 |
+
"eval_runtime": 236.7043,
|
695 |
+
"eval_samples_per_second": 35.23,
|
696 |
+
"eval_steps_per_second": 4.406,
|
697 |
+
"eval_wer": 0.2974793767186068,
|
698 |
+
"step": 9200
|
699 |
+
},
|
700 |
+
{
|
701 |
+
"epoch": 71.76,
|
702 |
+
"learning_rate": 8.549999999999999e-05,
|
703 |
+
"loss": 0.2546,
|
704 |
+
"step": 9400
|
705 |
+
},
|
706 |
+
{
|
707 |
+
"epoch": 71.76,
|
708 |
+
"eval_loss": 0.3212486505508423,
|
709 |
+
"eval_runtime": 238.4241,
|
710 |
+
"eval_samples_per_second": 34.975,
|
711 |
+
"eval_steps_per_second": 4.375,
|
712 |
+
"eval_wer": 0.30034372135655363,
|
713 |
+
"step": 9400
|
714 |
+
},
|
715 |
+
{
|
716 |
+
"epoch": 73.28,
|
717 |
+
"learning_rate": 8.088461538461537e-05,
|
718 |
+
"loss": 0.2482,
|
719 |
+
"step": 9600
|
720 |
+
},
|
721 |
+
{
|
722 |
+
"epoch": 73.28,
|
723 |
+
"eval_loss": 0.3337170481681824,
|
724 |
+
"eval_runtime": 237.0835,
|
725 |
+
"eval_samples_per_second": 35.173,
|
726 |
+
"eval_steps_per_second": 4.399,
|
727 |
+
"eval_wer": 0.30907424381301557,
|
728 |
+
"step": 9600
|
729 |
+
},
|
730 |
+
{
|
731 |
+
"epoch": 74.81,
|
732 |
+
"learning_rate": 7.626923076923075e-05,
|
733 |
+
"loss": 0.2504,
|
734 |
+
"step": 9800
|
735 |
+
},
|
736 |
+
{
|
737 |
+
"epoch": 74.81,
|
738 |
+
"eval_loss": 0.33080631494522095,
|
739 |
+
"eval_runtime": 236.549,
|
740 |
+
"eval_samples_per_second": 35.253,
|
741 |
+
"eval_steps_per_second": 4.409,
|
742 |
+
"eval_wer": 0.3109761686526123,
|
743 |
+
"step": 9800
|
744 |
+
},
|
745 |
+
{
|
746 |
+
"epoch": 76.34,
|
747 |
+
"learning_rate": 7.165384615384615e-05,
|
748 |
+
"loss": 0.2456,
|
749 |
+
"step": 10000
|
750 |
+
},
|
751 |
+
{
|
752 |
+
"epoch": 76.34,
|
753 |
+
"eval_loss": 0.31574100255966187,
|
754 |
+
"eval_runtime": 235.6572,
|
755 |
+
"eval_samples_per_second": 35.386,
|
756 |
+
"eval_steps_per_second": 4.426,
|
757 |
+
"eval_wer": 0.3117781851512374,
|
758 |
+
"step": 10000
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 77.86,
|
762 |
+
"learning_rate": 6.703846153846153e-05,
|
763 |
+
"loss": 0.2363,
|
764 |
+
"step": 10200
|
765 |
+
},
|
766 |
+
{
|
767 |
+
"epoch": 77.86,
|
768 |
+
"eval_loss": 0.3251018524169922,
|
769 |
+
"eval_runtime": 236.3835,
|
770 |
+
"eval_samples_per_second": 35.277,
|
771 |
+
"eval_steps_per_second": 4.412,
|
772 |
+
"eval_wer": 0.31439046746104493,
|
773 |
+
"step": 10200
|
774 |
+
},
|
775 |
+
{
|
776 |
+
"epoch": 79.39,
|
777 |
+
"learning_rate": 6.242307692307691e-05,
|
778 |
+
"loss": 0.2319,
|
779 |
+
"step": 10400
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 79.39,
|
783 |
+
"eval_loss": 0.32527828216552734,
|
784 |
+
"eval_runtime": 236.1364,
|
785 |
+
"eval_samples_per_second": 35.314,
|
786 |
+
"eval_steps_per_second": 4.417,
|
787 |
+
"eval_wer": 0.30382676443629697,
|
788 |
+
"step": 10400
|
789 |
+
},
|
790 |
+
{
|
791 |
+
"epoch": 80.92,
|
792 |
+
"learning_rate": 5.7807692307692304e-05,
|
793 |
+
"loss": 0.2266,
|
794 |
+
"step": 10600
|
795 |
+
},
|
796 |
+
{
|
797 |
+
"epoch": 80.92,
|
798 |
+
"eval_loss": 0.3374153673648834,
|
799 |
+
"eval_runtime": 236.6995,
|
800 |
+
"eval_samples_per_second": 35.23,
|
801 |
+
"eval_steps_per_second": 4.406,
|
802 |
+
"eval_wer": 0.30382676443629697,
|
803 |
+
"step": 10600
|
804 |
+
},
|
805 |
+
{
|
806 |
+
"epoch": 82.44,
|
807 |
+
"learning_rate": 5.321538461538461e-05,
|
808 |
+
"loss": 0.2279,
|
809 |
+
"step": 10800
|
810 |
+
},
|
811 |
+
{
|
812 |
+
"epoch": 82.44,
|
813 |
+
"eval_loss": 0.32676786184310913,
|
814 |
+
"eval_runtime": 235.2934,
|
815 |
+
"eval_samples_per_second": 35.441,
|
816 |
+
"eval_steps_per_second": 4.433,
|
817 |
+
"eval_wer": 0.29640238313473877,
|
818 |
+
"step": 10800
|
819 |
+
},
|
820 |
+
{
|
821 |
+
"epoch": 83.97,
|
822 |
+
"learning_rate": 4.8599999999999995e-05,
|
823 |
+
"loss": 0.2231,
|
824 |
+
"step": 11000
|
825 |
+
},
|
826 |
+
{
|
827 |
+
"epoch": 83.97,
|
828 |
+
"eval_loss": 0.32775917649269104,
|
829 |
+
"eval_runtime": 237.2828,
|
830 |
+
"eval_samples_per_second": 35.144,
|
831 |
+
"eval_steps_per_second": 4.396,
|
832 |
+
"eval_wer": 0.29502749770852427,
|
833 |
+
"step": 11000
|
834 |
+
},
|
835 |
+
{
|
836 |
+
"epoch": 85.5,
|
837 |
+
"learning_rate": 4.398461538461538e-05,
|
838 |
+
"loss": 0.2185,
|
839 |
+
"step": 11200
|
840 |
+
},
|
841 |
+
{
|
842 |
+
"epoch": 85.5,
|
843 |
+
"eval_loss": 0.3461829721927643,
|
844 |
+
"eval_runtime": 234.8207,
|
845 |
+
"eval_samples_per_second": 35.512,
|
846 |
+
"eval_steps_per_second": 4.442,
|
847 |
+
"eval_wer": 0.29814390467461044,
|
848 |
+
"step": 11200
|
849 |
+
},
|
850 |
+
{
|
851 |
+
"epoch": 87.02,
|
852 |
+
"learning_rate": 3.9369230769230767e-05,
|
853 |
+
"loss": 0.2245,
|
854 |
+
"step": 11400
|
855 |
+
},
|
856 |
+
{
|
857 |
+
"epoch": 87.02,
|
858 |
+
"eval_loss": 0.3311368525028229,
|
859 |
+
"eval_runtime": 234.6868,
|
860 |
+
"eval_samples_per_second": 35.532,
|
861 |
+
"eval_steps_per_second": 4.444,
|
862 |
+
"eval_wer": 0.2894821264894592,
|
863 |
+
"step": 11400
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"epoch": 88.55,
|
867 |
+
"learning_rate": 3.475384615384615e-05,
|
868 |
+
"loss": 0.223,
|
869 |
+
"step": 11600
|
870 |
+
},
|
871 |
+
{
|
872 |
+
"epoch": 88.55,
|
873 |
+
"eval_loss": 0.3325417935848236,
|
874 |
+
"eval_runtime": 234.9788,
|
875 |
+
"eval_samples_per_second": 35.488,
|
876 |
+
"eval_steps_per_second": 4.439,
|
877 |
+
"eval_wer": 0.2876947754353804,
|
878 |
+
"step": 11600
|
879 |
+
},
|
880 |
+
{
|
881 |
+
"epoch": 90.08,
|
882 |
+
"learning_rate": 3.0138461538461538e-05,
|
883 |
+
"loss": 0.2121,
|
884 |
+
"step": 11800
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 90.08,
|
888 |
+
"eval_loss": 0.333699494600296,
|
889 |
+
"eval_runtime": 237.3406,
|
890 |
+
"eval_samples_per_second": 35.135,
|
891 |
+
"eval_steps_per_second": 4.395,
|
892 |
+
"eval_wer": 0.282813932172319,
|
893 |
+
"step": 11800
|
894 |
+
},
|
895 |
+
{
|
896 |
+
"epoch": 91.6,
|
897 |
+
"learning_rate": 2.552307692307692e-05,
|
898 |
+
"loss": 0.2126,
|
899 |
+
"step": 12000
|
900 |
+
},
|
901 |
+
{
|
902 |
+
"epoch": 91.6,
|
903 |
+
"eval_loss": 0.3324645757675171,
|
904 |
+
"eval_runtime": 234.7938,
|
905 |
+
"eval_samples_per_second": 35.516,
|
906 |
+
"eval_steps_per_second": 4.442,
|
907 |
+
"eval_wer": 0.28077451879010085,
|
908 |
+
"step": 12000
|
909 |
+
},
|
910 |
+
{
|
911 |
+
"epoch": 93.13,
|
912 |
+
"learning_rate": 2.0907692307692305e-05,
|
913 |
+
"loss": 0.2027,
|
914 |
+
"step": 12200
|
915 |
+
},
|
916 |
+
{
|
917 |
+
"epoch": 93.13,
|
918 |
+
"eval_loss": 0.3276507258415222,
|
919 |
+
"eval_runtime": 235.1021,
|
920 |
+
"eval_samples_per_second": 35.47,
|
921 |
+
"eval_steps_per_second": 4.436,
|
922 |
+
"eval_wer": 0.2819660861594867,
|
923 |
+
"step": 12200
|
924 |
+
},
|
925 |
+
{
|
926 |
+
"epoch": 94.66,
|
927 |
+
"learning_rate": 1.629230769230769e-05,
|
928 |
+
"loss": 0.2058,
|
929 |
+
"step": 12400
|
930 |
+
},
|
931 |
+
{
|
932 |
+
"epoch": 94.66,
|
933 |
+
"eval_loss": 0.33078595995903015,
|
934 |
+
"eval_runtime": 236.8707,
|
935 |
+
"eval_samples_per_second": 35.205,
|
936 |
+
"eval_steps_per_second": 4.403,
|
937 |
+
"eval_wer": 0.2827451879010083,
|
938 |
+
"step": 12400
|
939 |
+
},
|
940 |
+
{
|
941 |
+
"epoch": 96.18,
|
942 |
+
"learning_rate": 1.1676923076923075e-05,
|
943 |
+
"loss": 0.1991,
|
944 |
+
"step": 12600
|
945 |
+
},
|
946 |
+
{
|
947 |
+
"epoch": 96.18,
|
948 |
+
"eval_loss": 0.3278521001338959,
|
949 |
+
"eval_runtime": 235.6753,
|
950 |
+
"eval_samples_per_second": 35.383,
|
951 |
+
"eval_steps_per_second": 4.426,
|
952 |
+
"eval_wer": 0.2820119156736939,
|
953 |
+
"step": 12600
|
954 |
+
},
|
955 |
+
{
|
956 |
+
"epoch": 97.71,
|
957 |
+
"learning_rate": 7.061538461538461e-06,
|
958 |
+
"loss": 0.1991,
|
959 |
+
"step": 12800
|
960 |
+
},
|
961 |
+
{
|
962 |
+
"epoch": 97.71,
|
963 |
+
"eval_loss": 0.3299693167209625,
|
964 |
+
"eval_runtime": 236.8407,
|
965 |
+
"eval_samples_per_second": 35.209,
|
966 |
+
"eval_steps_per_second": 4.404,
|
967 |
+
"eval_wer": 0.28221814848762605,
|
968 |
+
"step": 12800
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 99.24,
|
972 |
+
"learning_rate": 2.446153846153846e-06,
|
973 |
+
"loss": 0.1986,
|
974 |
+
"step": 13000
|
975 |
+
},
|
976 |
+
{
|
977 |
+
"epoch": 99.24,
|
978 |
+
"eval_loss": 0.3284846246242523,
|
979 |
+
"eval_runtime": 236.4429,
|
980 |
+
"eval_samples_per_second": 35.269,
|
981 |
+
"eval_steps_per_second": 4.411,
|
982 |
+
"eval_wer": 0.2834555453712191,
|
983 |
+
"step": 13000
|
984 |
+
},
|
985 |
+
{
|
986 |
+
"epoch": 100.0,
|
987 |
+
"step": 13100,
|
988 |
+
"total_flos": 8.36308166572502e+19,
|
989 |
+
"train_loss": 0.29656382378731067,
|
990 |
+
"train_runtime": 73649.3567,
|
991 |
+
"train_samples_per_second": 34.023,
|
992 |
+
"train_steps_per_second": 0.178
|
993 |
+
}
|
994 |
+
],
|
995 |
+
"max_steps": 13100,
|
996 |
+
"num_train_epochs": 100,
|
997 |
+
"total_flos": 8.36308166572502e+19,
|
998 |
+
"trial_name": null,
|
999 |
+
"trial_params": null
|
1000 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d1c646fe11ac72715f880fbe76c8724ae3a051b5d9a16b634b10373429a53a18
|
3 |
+
size 2991
|
vocab.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"-": 1, "a": 2, "b": 3, "c": 4, "d": 5, "e": 6, "f": 7, "g": 8, "h": 9, "i": 10, "j": 11, "k": 12, "l": 13, "m": 14, "n": 15, "o": 16, "p": 17, "q": 18, "r": 19, "s": 20, "t": 21, "u": 22, "v": 23, "w": 24, "x": 25, "y": 26, "z": 27, "â": 28, "ç": 29, "ë": 30, "î": 31, "ö": 32, "ü": 33, "ğ": 34, "ı": 35, "ş": 36, "̇": 37, "|": 0, "[UNK]": 38, "[PAD]": 39}
|