--- library_name: transformers license: gemma base_model: google/gemma-7b tags: - trl - orpo - generated_from_trainer model-index: - name: gemma-7b-borpo-low-quality-v4 results: [] --- # gemma-7b-borpo-low-quality-v4 This model is a fine-tuned version of [google/gemma-7b](https://huggingface.co/google/gemma-7b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.9080 - Rewards/chosen: -0.6019 - Rewards/rejected: -0.7507 - Rewards/accuracies: 0.6259 - Rewards/margins: 0.1488 - Logps/rejected: -1.5015 - Logps/chosen: -1.2038 - Logits/rejected: 247.6263 - Logits/chosen: 282.0085 - Nll Loss: 1.5545 - Log Odds Ratio: -0.6477 - Log Odds Chosen: 0.4230 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 2 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: inverse_sqrt - lr_scheduler_warmup_steps: 100 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | Nll Loss | Log Odds Ratio | Log Odds Chosen | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|:--------:|:--------------:|:---------------:| | 1.8238 | 0.9955 | 167 | 1.8176 | -0.5378 | -0.6319 | 0.5468 | 0.0941 | -1.2637 | -1.0755 | 293.2744 | 322.6454 | 1.4783 | -0.6631 | 0.2616 | | 1.3092 | 1.9970 | 335 | 1.7560 | -0.5202 | -0.6309 | 0.5324 | 0.1106 | -1.2617 | -1.0405 | 279.0659 | 309.3900 | 1.4054 | -0.6637 | 0.3224 | | 0.6827 | 2.9866 | 501 | 1.9080 | -0.6019 | -0.7507 | 0.6259 | 0.1488 | -1.5015 | -1.2038 | 247.6263 | 282.0085 | 1.5545 | -0.6477 | 0.4230 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.0 - Tokenizers 0.19.1