byroneverson commited on
Commit
da60b9f
1 Parent(s): bbf90b7

Upload folder using huggingface_hub

Browse files
config.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "THUDM/LongWriter-glm4-9b",
3
+ "add_bias_linear": false,
4
+ "add_qkv_bias": true,
5
+ "apply_query_key_layer_scaling": true,
6
+ "apply_residual_connection_post_layernorm": false,
7
+ "architectures": [
8
+ "ChatGLMForConditionalGeneration"
9
+ ],
10
+ "attention_dropout": 0.0,
11
+ "attention_softmax_in_fp32": true,
12
+ "attn_implementation": "sdpa",
13
+ "auto_map": {
14
+ "AutoConfig": "configuration_chatglm.ChatGLMConfig",
15
+ "AutoModel": "modeling_chatglm.ChatGLMForConditionalGeneration",
16
+ "AutoModelForCausalLM": "modeling_chatglm.ChatGLMForConditionalGeneration",
17
+ "AutoModelForSeq2SeqLM": "modeling_chatglm.ChatGLMForConditionalGeneration",
18
+ "AutoModelForSequenceClassification": "modeling_chatglm.ChatGLMForSequenceClassification"
19
+ },
20
+ "bias_dropout_fusion": true,
21
+ "classifier_dropout": null,
22
+ "eos_token_id": [
23
+ 151329,
24
+ 151336,
25
+ 151338
26
+ ],
27
+ "ffn_hidden_size": 13696,
28
+ "fp32_residual_connection": false,
29
+ "hidden_dropout": 0.0,
30
+ "hidden_size": 4096,
31
+ "kv_channels": 128,
32
+ "layernorm_epsilon": 1.5625e-07,
33
+ "model_type": "chatglm",
34
+ "multi_query_attention": true,
35
+ "multi_query_group_num": 2,
36
+ "num_attention_heads": 32,
37
+ "num_hidden_layers": 40,
38
+ "num_layers": 40,
39
+ "original_rope": true,
40
+ "pad_token_id": 151329,
41
+ "padded_vocab_size": 151552,
42
+ "post_layer_norm": true,
43
+ "rmsnorm": true,
44
+ "rope_ratio": 500,
45
+ "seq_length": 1048576,
46
+ "tie_word_embeddings": false,
47
+ "torch_dtype": "bfloat16",
48
+ "transformers_version": "4.43.0",
49
+ "use_cache": true,
50
+ "vocab_size": 151552
51
+ }
configuration_chatglm.py ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import PretrainedConfig
2
+
3
+
4
+ class ChatGLMConfig(PretrainedConfig):
5
+ model_type = "chatglm"
6
+
7
+ def __init__(
8
+ self,
9
+ num_layers=28,
10
+ padded_vocab_size=65024,
11
+ hidden_size=4096,
12
+ ffn_hidden_size=13696,
13
+ kv_channels=128,
14
+ num_attention_heads=32,
15
+ seq_length=2048,
16
+ hidden_dropout=0.0,
17
+ classifier_dropout=None,
18
+ attention_dropout=0.0,
19
+ layernorm_epsilon=1e-5,
20
+ rmsnorm=True,
21
+ apply_residual_connection_post_layernorm=False,
22
+ post_layer_norm=True,
23
+ add_bias_linear=False,
24
+ add_qkv_bias=False,
25
+ bias_dropout_fusion=True,
26
+ multi_query_attention=False,
27
+ multi_query_group_num=1,
28
+ rope_ratio=1,
29
+ apply_query_key_layer_scaling=True,
30
+ attention_softmax_in_fp32=True,
31
+ fp32_residual_connection=False,
32
+ **kwargs
33
+ ):
34
+ self.num_layers = num_layers
35
+ self.vocab_size = padded_vocab_size
36
+ self.padded_vocab_size = padded_vocab_size
37
+ self.hidden_size = hidden_size
38
+ self.ffn_hidden_size = ffn_hidden_size
39
+ self.kv_channels = kv_channels
40
+ self.num_attention_heads = num_attention_heads
41
+ self.seq_length = seq_length
42
+ self.hidden_dropout = hidden_dropout
43
+ self.classifier_dropout = classifier_dropout
44
+ self.attention_dropout = attention_dropout
45
+ self.layernorm_epsilon = layernorm_epsilon
46
+ self.rmsnorm = rmsnorm
47
+ self.apply_residual_connection_post_layernorm = apply_residual_connection_post_layernorm
48
+ self.post_layer_norm = post_layer_norm
49
+ self.add_bias_linear = add_bias_linear
50
+ self.add_qkv_bias = add_qkv_bias
51
+ self.bias_dropout_fusion = bias_dropout_fusion
52
+ self.multi_query_attention = multi_query_attention
53
+ self.multi_query_group_num = multi_query_group_num
54
+ self.rope_ratio = rope_ratio
55
+ self.apply_query_key_layer_scaling = apply_query_key_layer_scaling
56
+ self.attention_softmax_in_fp32 = attention_softmax_in_fp32
57
+ self.fp32_residual_connection = fp32_residual_connection
58
+ super().__init__(**kwargs)
direction_attn.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:50c268d61ac21eb0d4d3a3c416c1714a610fd16829a7896a0edfb51d1c542673
3
+ size 656575
direction_ffn.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c767d81fff4a8ca904690fe3816a5de0a1ce2c309202e99735582d8ac24586e4
3
+ size 656570
direction_tok.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:272cd54ca3c2c59f57b293dd6aedca0e19ef9c97a54785604af93f694cf4faec
3
+ size 17594
generation_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "eos_token_id": [
4
+ 151329,
5
+ 151336,
6
+ 151338
7
+ ],
8
+ "pad_token_id": 151329,
9
+ "transformers_version": "4.43.0"
10
+ }
model.safetensors.index.json ADDED
@@ -0,0 +1,291 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 18799902784
4
+ },
5
+ "weight_map": {
6
+ "transformer.embedding.word_embeddings.weight": "model-00001-of-00004.safetensors",
7
+ "transformer.encoder.final_layernorm.weight": "model-00004-of-00004.safetensors",
8
+ "transformer.encoder.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "transformer.encoder.layers.0.mlp.dense_4h_to_h.weight": "model-00001-of-00004.safetensors",
10
+ "transformer.encoder.layers.0.mlp.dense_h_to_4h.weight": "model-00001-of-00004.safetensors",
11
+ "transformer.encoder.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
12
+ "transformer.encoder.layers.0.self_attention.dense.weight": "model-00001-of-00004.safetensors",
13
+ "transformer.encoder.layers.0.self_attention.query_key_value.bias": "model-00001-of-00004.safetensors",
14
+ "transformer.encoder.layers.0.self_attention.query_key_value.weight": "model-00001-of-00004.safetensors",
15
+ "transformer.encoder.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
16
+ "transformer.encoder.layers.1.mlp.dense_4h_to_h.weight": "model-00001-of-00004.safetensors",
17
+ "transformer.encoder.layers.1.mlp.dense_h_to_4h.weight": "model-00001-of-00004.safetensors",
18
+ "transformer.encoder.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
19
+ "transformer.encoder.layers.1.self_attention.dense.weight": "model-00001-of-00004.safetensors",
20
+ "transformer.encoder.layers.1.self_attention.query_key_value.bias": "model-00001-of-00004.safetensors",
21
+ "transformer.encoder.layers.1.self_attention.query_key_value.weight": "model-00001-of-00004.safetensors",
22
+ "transformer.encoder.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
23
+ "transformer.encoder.layers.10.mlp.dense_4h_to_h.weight": "model-00002-of-00004.safetensors",
24
+ "transformer.encoder.layers.10.mlp.dense_h_to_4h.weight": "model-00002-of-00004.safetensors",
25
+ "transformer.encoder.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
26
+ "transformer.encoder.layers.10.self_attention.dense.weight": "model-00002-of-00004.safetensors",
27
+ "transformer.encoder.layers.10.self_attention.query_key_value.bias": "model-00002-of-00004.safetensors",
28
+ "transformer.encoder.layers.10.self_attention.query_key_value.weight": "model-00002-of-00004.safetensors",
29
+ "transformer.encoder.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
30
+ "transformer.encoder.layers.11.mlp.dense_4h_to_h.weight": "model-00002-of-00004.safetensors",
31
+ "transformer.encoder.layers.11.mlp.dense_h_to_4h.weight": "model-00002-of-00004.safetensors",
32
+ "transformer.encoder.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
33
+ "transformer.encoder.layers.11.self_attention.dense.weight": "model-00002-of-00004.safetensors",
34
+ "transformer.encoder.layers.11.self_attention.query_key_value.bias": "model-00002-of-00004.safetensors",
35
+ "transformer.encoder.layers.11.self_attention.query_key_value.weight": "model-00002-of-00004.safetensors",
36
+ "transformer.encoder.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
37
+ "transformer.encoder.layers.12.mlp.dense_4h_to_h.weight": "model-00002-of-00004.safetensors",
38
+ "transformer.encoder.layers.12.mlp.dense_h_to_4h.weight": "model-00002-of-00004.safetensors",
39
+ "transformer.encoder.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
40
+ "transformer.encoder.layers.12.self_attention.dense.weight": "model-00002-of-00004.safetensors",
41
+ "transformer.encoder.layers.12.self_attention.query_key_value.bias": "model-00002-of-00004.safetensors",
42
+ "transformer.encoder.layers.12.self_attention.query_key_value.weight": "model-00002-of-00004.safetensors",
43
+ "transformer.encoder.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
44
+ "transformer.encoder.layers.13.mlp.dense_4h_to_h.weight": "model-00002-of-00004.safetensors",
45
+ "transformer.encoder.layers.13.mlp.dense_h_to_4h.weight": "model-00002-of-00004.safetensors",
46
+ "transformer.encoder.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
47
+ "transformer.encoder.layers.13.self_attention.dense.weight": "model-00002-of-00004.safetensors",
48
+ "transformer.encoder.layers.13.self_attention.query_key_value.bias": "model-00002-of-00004.safetensors",
49
+ "transformer.encoder.layers.13.self_attention.query_key_value.weight": "model-00002-of-00004.safetensors",
50
+ "transformer.encoder.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
51
+ "transformer.encoder.layers.14.mlp.dense_4h_to_h.weight": "model-00002-of-00004.safetensors",
52
+ "transformer.encoder.layers.14.mlp.dense_h_to_4h.weight": "model-00002-of-00004.safetensors",
53
+ "transformer.encoder.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
54
+ "transformer.encoder.layers.14.self_attention.dense.weight": "model-00002-of-00004.safetensors",
55
+ "transformer.encoder.layers.14.self_attention.query_key_value.bias": "model-00002-of-00004.safetensors",
56
+ "transformer.encoder.layers.14.self_attention.query_key_value.weight": "model-00002-of-00004.safetensors",
57
+ "transformer.encoder.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
58
+ "transformer.encoder.layers.15.mlp.dense_4h_to_h.weight": "model-00002-of-00004.safetensors",
59
+ "transformer.encoder.layers.15.mlp.dense_h_to_4h.weight": "model-00002-of-00004.safetensors",
60
+ "transformer.encoder.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
61
+ "transformer.encoder.layers.15.self_attention.dense.weight": "model-00002-of-00004.safetensors",
62
+ "transformer.encoder.layers.15.self_attention.query_key_value.bias": "model-00002-of-00004.safetensors",
63
+ "transformer.encoder.layers.15.self_attention.query_key_value.weight": "model-00002-of-00004.safetensors",
64
+ "transformer.encoder.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
65
+ "transformer.encoder.layers.16.mlp.dense_4h_to_h.weight": "model-00002-of-00004.safetensors",
66
+ "transformer.encoder.layers.16.mlp.dense_h_to_4h.weight": "model-00002-of-00004.safetensors",
67
+ "transformer.encoder.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
68
+ "transformer.encoder.layers.16.self_attention.dense.weight": "model-00002-of-00004.safetensors",
69
+ "transformer.encoder.layers.16.self_attention.query_key_value.bias": "model-00002-of-00004.safetensors",
70
+ "transformer.encoder.layers.16.self_attention.query_key_value.weight": "model-00002-of-00004.safetensors",
71
+ "transformer.encoder.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
72
+ "transformer.encoder.layers.17.mlp.dense_4h_to_h.weight": "model-00002-of-00004.safetensors",
73
+ "transformer.encoder.layers.17.mlp.dense_h_to_4h.weight": "model-00002-of-00004.safetensors",
74
+ "transformer.encoder.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
75
+ "transformer.encoder.layers.17.self_attention.dense.weight": "model-00002-of-00004.safetensors",
76
+ "transformer.encoder.layers.17.self_attention.query_key_value.bias": "model-00002-of-00004.safetensors",
77
+ "transformer.encoder.layers.17.self_attention.query_key_value.weight": "model-00002-of-00004.safetensors",
78
+ "transformer.encoder.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors",
79
+ "transformer.encoder.layers.18.mlp.dense_4h_to_h.weight": "model-00002-of-00004.safetensors",
80
+ "transformer.encoder.layers.18.mlp.dense_h_to_4h.weight": "model-00002-of-00004.safetensors",
81
+ "transformer.encoder.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
82
+ "transformer.encoder.layers.18.self_attention.dense.weight": "model-00002-of-00004.safetensors",
83
+ "transformer.encoder.layers.18.self_attention.query_key_value.bias": "model-00002-of-00004.safetensors",
84
+ "transformer.encoder.layers.18.self_attention.query_key_value.weight": "model-00002-of-00004.safetensors",
85
+ "transformer.encoder.layers.19.input_layernorm.weight": "model-00002-of-00004.safetensors",
86
+ "transformer.encoder.layers.19.mlp.dense_4h_to_h.weight": "model-00002-of-00004.safetensors",
87
+ "transformer.encoder.layers.19.mlp.dense_h_to_4h.weight": "model-00002-of-00004.safetensors",
88
+ "transformer.encoder.layers.19.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
89
+ "transformer.encoder.layers.19.self_attention.dense.weight": "model-00002-of-00004.safetensors",
90
+ "transformer.encoder.layers.19.self_attention.query_key_value.bias": "model-00002-of-00004.safetensors",
91
+ "transformer.encoder.layers.19.self_attention.query_key_value.weight": "model-00002-of-00004.safetensors",
92
+ "transformer.encoder.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
93
+ "transformer.encoder.layers.2.mlp.dense_4h_to_h.weight": "model-00001-of-00004.safetensors",
94
+ "transformer.encoder.layers.2.mlp.dense_h_to_4h.weight": "model-00001-of-00004.safetensors",
95
+ "transformer.encoder.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
96
+ "transformer.encoder.layers.2.self_attention.dense.weight": "model-00001-of-00004.safetensors",
97
+ "transformer.encoder.layers.2.self_attention.query_key_value.bias": "model-00001-of-00004.safetensors",
98
+ "transformer.encoder.layers.2.self_attention.query_key_value.weight": "model-00001-of-00004.safetensors",
99
+ "transformer.encoder.layers.20.input_layernorm.weight": "model-00002-of-00004.safetensors",
100
+ "transformer.encoder.layers.20.mlp.dense_4h_to_h.weight": "model-00002-of-00004.safetensors",
101
+ "transformer.encoder.layers.20.mlp.dense_h_to_4h.weight": "model-00002-of-00004.safetensors",
102
+ "transformer.encoder.layers.20.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
103
+ "transformer.encoder.layers.20.self_attention.dense.weight": "model-00002-of-00004.safetensors",
104
+ "transformer.encoder.layers.20.self_attention.query_key_value.bias": "model-00002-of-00004.safetensors",
105
+ "transformer.encoder.layers.20.self_attention.query_key_value.weight": "model-00002-of-00004.safetensors",
106
+ "transformer.encoder.layers.21.input_layernorm.weight": "model-00002-of-00004.safetensors",
107
+ "transformer.encoder.layers.21.mlp.dense_4h_to_h.weight": "model-00003-of-00004.safetensors",
108
+ "transformer.encoder.layers.21.mlp.dense_h_to_4h.weight": "model-00003-of-00004.safetensors",
109
+ "transformer.encoder.layers.21.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
110
+ "transformer.encoder.layers.21.self_attention.dense.weight": "model-00002-of-00004.safetensors",
111
+ "transformer.encoder.layers.21.self_attention.query_key_value.bias": "model-00002-of-00004.safetensors",
112
+ "transformer.encoder.layers.21.self_attention.query_key_value.weight": "model-00002-of-00004.safetensors",
113
+ "transformer.encoder.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
114
+ "transformer.encoder.layers.22.mlp.dense_4h_to_h.weight": "model-00003-of-00004.safetensors",
115
+ "transformer.encoder.layers.22.mlp.dense_h_to_4h.weight": "model-00003-of-00004.safetensors",
116
+ "transformer.encoder.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
117
+ "transformer.encoder.layers.22.self_attention.dense.weight": "model-00003-of-00004.safetensors",
118
+ "transformer.encoder.layers.22.self_attention.query_key_value.bias": "model-00003-of-00004.safetensors",
119
+ "transformer.encoder.layers.22.self_attention.query_key_value.weight": "model-00003-of-00004.safetensors",
120
+ "transformer.encoder.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
121
+ "transformer.encoder.layers.23.mlp.dense_4h_to_h.weight": "model-00003-of-00004.safetensors",
122
+ "transformer.encoder.layers.23.mlp.dense_h_to_4h.weight": "model-00003-of-00004.safetensors",
123
+ "transformer.encoder.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
124
+ "transformer.encoder.layers.23.self_attention.dense.weight": "model-00003-of-00004.safetensors",
125
+ "transformer.encoder.layers.23.self_attention.query_key_value.bias": "model-00003-of-00004.safetensors",
126
+ "transformer.encoder.layers.23.self_attention.query_key_value.weight": "model-00003-of-00004.safetensors",
127
+ "transformer.encoder.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
128
+ "transformer.encoder.layers.24.mlp.dense_4h_to_h.weight": "model-00003-of-00004.safetensors",
129
+ "transformer.encoder.layers.24.mlp.dense_h_to_4h.weight": "model-00003-of-00004.safetensors",
130
+ "transformer.encoder.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
131
+ "transformer.encoder.layers.24.self_attention.dense.weight": "model-00003-of-00004.safetensors",
132
+ "transformer.encoder.layers.24.self_attention.query_key_value.bias": "model-00003-of-00004.safetensors",
133
+ "transformer.encoder.layers.24.self_attention.query_key_value.weight": "model-00003-of-00004.safetensors",
134
+ "transformer.encoder.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
135
+ "transformer.encoder.layers.25.mlp.dense_4h_to_h.weight": "model-00003-of-00004.safetensors",
136
+ "transformer.encoder.layers.25.mlp.dense_h_to_4h.weight": "model-00003-of-00004.safetensors",
137
+ "transformer.encoder.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
138
+ "transformer.encoder.layers.25.self_attention.dense.weight": "model-00003-of-00004.safetensors",
139
+ "transformer.encoder.layers.25.self_attention.query_key_value.bias": "model-00003-of-00004.safetensors",
140
+ "transformer.encoder.layers.25.self_attention.query_key_value.weight": "model-00003-of-00004.safetensors",
141
+ "transformer.encoder.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
142
+ "transformer.encoder.layers.26.mlp.dense_4h_to_h.weight": "model-00003-of-00004.safetensors",
143
+ "transformer.encoder.layers.26.mlp.dense_h_to_4h.weight": "model-00003-of-00004.safetensors",
144
+ "transformer.encoder.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
145
+ "transformer.encoder.layers.26.self_attention.dense.weight": "model-00003-of-00004.safetensors",
146
+ "transformer.encoder.layers.26.self_attention.query_key_value.bias": "model-00003-of-00004.safetensors",
147
+ "transformer.encoder.layers.26.self_attention.query_key_value.weight": "model-00003-of-00004.safetensors",
148
+ "transformer.encoder.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
149
+ "transformer.encoder.layers.27.mlp.dense_4h_to_h.weight": "model-00003-of-00004.safetensors",
150
+ "transformer.encoder.layers.27.mlp.dense_h_to_4h.weight": "model-00003-of-00004.safetensors",
151
+ "transformer.encoder.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
152
+ "transformer.encoder.layers.27.self_attention.dense.weight": "model-00003-of-00004.safetensors",
153
+ "transformer.encoder.layers.27.self_attention.query_key_value.bias": "model-00003-of-00004.safetensors",
154
+ "transformer.encoder.layers.27.self_attention.query_key_value.weight": "model-00003-of-00004.safetensors",
155
+ "transformer.encoder.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
156
+ "transformer.encoder.layers.28.mlp.dense_4h_to_h.weight": "model-00003-of-00004.safetensors",
157
+ "transformer.encoder.layers.28.mlp.dense_h_to_4h.weight": "model-00003-of-00004.safetensors",
158
+ "transformer.encoder.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
159
+ "transformer.encoder.layers.28.self_attention.dense.weight": "model-00003-of-00004.safetensors",
160
+ "transformer.encoder.layers.28.self_attention.query_key_value.bias": "model-00003-of-00004.safetensors",
161
+ "transformer.encoder.layers.28.self_attention.query_key_value.weight": "model-00003-of-00004.safetensors",
162
+ "transformer.encoder.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
163
+ "transformer.encoder.layers.29.mlp.dense_4h_to_h.weight": "model-00003-of-00004.safetensors",
164
+ "transformer.encoder.layers.29.mlp.dense_h_to_4h.weight": "model-00003-of-00004.safetensors",
165
+ "transformer.encoder.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
166
+ "transformer.encoder.layers.29.self_attention.dense.weight": "model-00003-of-00004.safetensors",
167
+ "transformer.encoder.layers.29.self_attention.query_key_value.bias": "model-00003-of-00004.safetensors",
168
+ "transformer.encoder.layers.29.self_attention.query_key_value.weight": "model-00003-of-00004.safetensors",
169
+ "transformer.encoder.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
170
+ "transformer.encoder.layers.3.mlp.dense_4h_to_h.weight": "model-00001-of-00004.safetensors",
171
+ "transformer.encoder.layers.3.mlp.dense_h_to_4h.weight": "model-00001-of-00004.safetensors",
172
+ "transformer.encoder.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
173
+ "transformer.encoder.layers.3.self_attention.dense.weight": "model-00001-of-00004.safetensors",
174
+ "transformer.encoder.layers.3.self_attention.query_key_value.bias": "model-00001-of-00004.safetensors",
175
+ "transformer.encoder.layers.3.self_attention.query_key_value.weight": "model-00001-of-00004.safetensors",
176
+ "transformer.encoder.layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors",
177
+ "transformer.encoder.layers.30.mlp.dense_4h_to_h.weight": "model-00003-of-00004.safetensors",
178
+ "transformer.encoder.layers.30.mlp.dense_h_to_4h.weight": "model-00003-of-00004.safetensors",
179
+ "transformer.encoder.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
180
+ "transformer.encoder.layers.30.self_attention.dense.weight": "model-00003-of-00004.safetensors",
181
+ "transformer.encoder.layers.30.self_attention.query_key_value.bias": "model-00003-of-00004.safetensors",
182
+ "transformer.encoder.layers.30.self_attention.query_key_value.weight": "model-00003-of-00004.safetensors",
183
+ "transformer.encoder.layers.31.input_layernorm.weight": "model-00003-of-00004.safetensors",
184
+ "transformer.encoder.layers.31.mlp.dense_4h_to_h.weight": "model-00003-of-00004.safetensors",
185
+ "transformer.encoder.layers.31.mlp.dense_h_to_4h.weight": "model-00003-of-00004.safetensors",
186
+ "transformer.encoder.layers.31.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
187
+ "transformer.encoder.layers.31.self_attention.dense.weight": "model-00003-of-00004.safetensors",
188
+ "transformer.encoder.layers.31.self_attention.query_key_value.bias": "model-00003-of-00004.safetensors",
189
+ "transformer.encoder.layers.31.self_attention.query_key_value.weight": "model-00003-of-00004.safetensors",
190
+ "transformer.encoder.layers.32.input_layernorm.weight": "model-00003-of-00004.safetensors",
191
+ "transformer.encoder.layers.32.mlp.dense_4h_to_h.weight": "model-00003-of-00004.safetensors",
192
+ "transformer.encoder.layers.32.mlp.dense_h_to_4h.weight": "model-00003-of-00004.safetensors",
193
+ "transformer.encoder.layers.32.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
194
+ "transformer.encoder.layers.32.self_attention.dense.weight": "model-00003-of-00004.safetensors",
195
+ "transformer.encoder.layers.32.self_attention.query_key_value.bias": "model-00003-of-00004.safetensors",
196
+ "transformer.encoder.layers.32.self_attention.query_key_value.weight": "model-00003-of-00004.safetensors",
197
+ "transformer.encoder.layers.33.input_layernorm.weight": "model-00003-of-00004.safetensors",
198
+ "transformer.encoder.layers.33.mlp.dense_4h_to_h.weight": "model-00004-of-00004.safetensors",
199
+ "transformer.encoder.layers.33.mlp.dense_h_to_4h.weight": "model-00004-of-00004.safetensors",
200
+ "transformer.encoder.layers.33.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
201
+ "transformer.encoder.layers.33.self_attention.dense.weight": "model-00003-of-00004.safetensors",
202
+ "transformer.encoder.layers.33.self_attention.query_key_value.bias": "model-00003-of-00004.safetensors",
203
+ "transformer.encoder.layers.33.self_attention.query_key_value.weight": "model-00003-of-00004.safetensors",
204
+ "transformer.encoder.layers.34.input_layernorm.weight": "model-00004-of-00004.safetensors",
205
+ "transformer.encoder.layers.34.mlp.dense_4h_to_h.weight": "model-00004-of-00004.safetensors",
206
+ "transformer.encoder.layers.34.mlp.dense_h_to_4h.weight": "model-00004-of-00004.safetensors",
207
+ "transformer.encoder.layers.34.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
208
+ "transformer.encoder.layers.34.self_attention.dense.weight": "model-00004-of-00004.safetensors",
209
+ "transformer.encoder.layers.34.self_attention.query_key_value.bias": "model-00004-of-00004.safetensors",
210
+ "transformer.encoder.layers.34.self_attention.query_key_value.weight": "model-00004-of-00004.safetensors",
211
+ "transformer.encoder.layers.35.input_layernorm.weight": "model-00004-of-00004.safetensors",
212
+ "transformer.encoder.layers.35.mlp.dense_4h_to_h.weight": "model-00004-of-00004.safetensors",
213
+ "transformer.encoder.layers.35.mlp.dense_h_to_4h.weight": "model-00004-of-00004.safetensors",
214
+ "transformer.encoder.layers.35.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
215
+ "transformer.encoder.layers.35.self_attention.dense.weight": "model-00004-of-00004.safetensors",
216
+ "transformer.encoder.layers.35.self_attention.query_key_value.bias": "model-00004-of-00004.safetensors",
217
+ "transformer.encoder.layers.35.self_attention.query_key_value.weight": "model-00004-of-00004.safetensors",
218
+ "transformer.encoder.layers.36.input_layernorm.weight": "model-00004-of-00004.safetensors",
219
+ "transformer.encoder.layers.36.mlp.dense_4h_to_h.weight": "model-00004-of-00004.safetensors",
220
+ "transformer.encoder.layers.36.mlp.dense_h_to_4h.weight": "model-00004-of-00004.safetensors",
221
+ "transformer.encoder.layers.36.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
222
+ "transformer.encoder.layers.36.self_attention.dense.weight": "model-00004-of-00004.safetensors",
223
+ "transformer.encoder.layers.36.self_attention.query_key_value.bias": "model-00004-of-00004.safetensors",
224
+ "transformer.encoder.layers.36.self_attention.query_key_value.weight": "model-00004-of-00004.safetensors",
225
+ "transformer.encoder.layers.37.input_layernorm.weight": "model-00004-of-00004.safetensors",
226
+ "transformer.encoder.layers.37.mlp.dense_4h_to_h.weight": "model-00004-of-00004.safetensors",
227
+ "transformer.encoder.layers.37.mlp.dense_h_to_4h.weight": "model-00004-of-00004.safetensors",
228
+ "transformer.encoder.layers.37.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
229
+ "transformer.encoder.layers.37.self_attention.dense.weight": "model-00004-of-00004.safetensors",
230
+ "transformer.encoder.layers.37.self_attention.query_key_value.bias": "model-00004-of-00004.safetensors",
231
+ "transformer.encoder.layers.37.self_attention.query_key_value.weight": "model-00004-of-00004.safetensors",
232
+ "transformer.encoder.layers.38.input_layernorm.weight": "model-00004-of-00004.safetensors",
233
+ "transformer.encoder.layers.38.mlp.dense_4h_to_h.weight": "model-00004-of-00004.safetensors",
234
+ "transformer.encoder.layers.38.mlp.dense_h_to_4h.weight": "model-00004-of-00004.safetensors",
235
+ "transformer.encoder.layers.38.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
236
+ "transformer.encoder.layers.38.self_attention.dense.weight": "model-00004-of-00004.safetensors",
237
+ "transformer.encoder.layers.38.self_attention.query_key_value.bias": "model-00004-of-00004.safetensors",
238
+ "transformer.encoder.layers.38.self_attention.query_key_value.weight": "model-00004-of-00004.safetensors",
239
+ "transformer.encoder.layers.39.input_layernorm.weight": "model-00004-of-00004.safetensors",
240
+ "transformer.encoder.layers.39.mlp.dense_4h_to_h.weight": "model-00004-of-00004.safetensors",
241
+ "transformer.encoder.layers.39.mlp.dense_h_to_4h.weight": "model-00004-of-00004.safetensors",
242
+ "transformer.encoder.layers.39.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
243
+ "transformer.encoder.layers.39.self_attention.dense.weight": "model-00004-of-00004.safetensors",
244
+ "transformer.encoder.layers.39.self_attention.query_key_value.bias": "model-00004-of-00004.safetensors",
245
+ "transformer.encoder.layers.39.self_attention.query_key_value.weight": "model-00004-of-00004.safetensors",
246
+ "transformer.encoder.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
247
+ "transformer.encoder.layers.4.mlp.dense_4h_to_h.weight": "model-00001-of-00004.safetensors",
248
+ "transformer.encoder.layers.4.mlp.dense_h_to_4h.weight": "model-00001-of-00004.safetensors",
249
+ "transformer.encoder.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
250
+ "transformer.encoder.layers.4.self_attention.dense.weight": "model-00001-of-00004.safetensors",
251
+ "transformer.encoder.layers.4.self_attention.query_key_value.bias": "model-00001-of-00004.safetensors",
252
+ "transformer.encoder.layers.4.self_attention.query_key_value.weight": "model-00001-of-00004.safetensors",
253
+ "transformer.encoder.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
254
+ "transformer.encoder.layers.5.mlp.dense_4h_to_h.weight": "model-00001-of-00004.safetensors",
255
+ "transformer.encoder.layers.5.mlp.dense_h_to_4h.weight": "model-00001-of-00004.safetensors",
256
+ "transformer.encoder.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
257
+ "transformer.encoder.layers.5.self_attention.dense.weight": "model-00001-of-00004.safetensors",
258
+ "transformer.encoder.layers.5.self_attention.query_key_value.bias": "model-00001-of-00004.safetensors",
259
+ "transformer.encoder.layers.5.self_attention.query_key_value.weight": "model-00001-of-00004.safetensors",
260
+ "transformer.encoder.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
261
+ "transformer.encoder.layers.6.mlp.dense_4h_to_h.weight": "model-00001-of-00004.safetensors",
262
+ "transformer.encoder.layers.6.mlp.dense_h_to_4h.weight": "model-00001-of-00004.safetensors",
263
+ "transformer.encoder.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
264
+ "transformer.encoder.layers.6.self_attention.dense.weight": "model-00001-of-00004.safetensors",
265
+ "transformer.encoder.layers.6.self_attention.query_key_value.bias": "model-00001-of-00004.safetensors",
266
+ "transformer.encoder.layers.6.self_attention.query_key_value.weight": "model-00001-of-00004.safetensors",
267
+ "transformer.encoder.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
268
+ "transformer.encoder.layers.7.mlp.dense_4h_to_h.weight": "model-00001-of-00004.safetensors",
269
+ "transformer.encoder.layers.7.mlp.dense_h_to_4h.weight": "model-00001-of-00004.safetensors",
270
+ "transformer.encoder.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
271
+ "transformer.encoder.layers.7.self_attention.dense.weight": "model-00001-of-00004.safetensors",
272
+ "transformer.encoder.layers.7.self_attention.query_key_value.bias": "model-00001-of-00004.safetensors",
273
+ "transformer.encoder.layers.7.self_attention.query_key_value.weight": "model-00001-of-00004.safetensors",
274
+ "transformer.encoder.layers.8.input_layernorm.weight": "model-00001-of-00004.safetensors",
275
+ "transformer.encoder.layers.8.mlp.dense_4h_to_h.weight": "model-00001-of-00004.safetensors",
276
+ "transformer.encoder.layers.8.mlp.dense_h_to_4h.weight": "model-00001-of-00004.safetensors",
277
+ "transformer.encoder.layers.8.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
278
+ "transformer.encoder.layers.8.self_attention.dense.weight": "model-00001-of-00004.safetensors",
279
+ "transformer.encoder.layers.8.self_attention.query_key_value.bias": "model-00001-of-00004.safetensors",
280
+ "transformer.encoder.layers.8.self_attention.query_key_value.weight": "model-00001-of-00004.safetensors",
281
+ "transformer.encoder.layers.9.input_layernorm.weight": "model-00001-of-00004.safetensors",
282
+ "transformer.encoder.layers.9.mlp.dense_4h_to_h.weight": "model-00002-of-00004.safetensors",
283
+ "transformer.encoder.layers.9.mlp.dense_h_to_4h.weight": "model-00002-of-00004.safetensors",
284
+ "transformer.encoder.layers.9.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
285
+ "transformer.encoder.layers.9.self_attention.dense.weight": "model-00001-of-00004.safetensors",
286
+ "transformer.encoder.layers.9.self_attention.query_key_value.bias": "model-00001-of-00004.safetensors",
287
+ "transformer.encoder.layers.9.self_attention.query_key_value.weight": "model-00001-of-00004.safetensors",
288
+ "transformer.output_layer.weight": "model-00004-of-00004.safetensors",
289
+ "transformer.rotary_pos_emb.inv_freq": "model-00001-of-00004.safetensors"
290
+ }
291
+ }
modeling_chatglm.py ADDED
@@ -0,0 +1,1064 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ PyTorch ChatGLM model. """
2
+
3
+ import math
4
+ import sys
5
+ import torch
6
+ import torch.utils.checkpoint
7
+ import torch.nn.functional as F
8
+ from torch import nn
9
+ from torch.nn import CrossEntropyLoss, LayerNorm, MSELoss, BCEWithLogitsLoss
10
+ from torch.nn.utils import skip_init
11
+ from typing import Optional, Tuple, Union, List, Dict, Any
12
+
13
+ from transformers.modeling_outputs import (
14
+ BaseModelOutputWithPast,
15
+ CausalLMOutputWithPast,
16
+ SequenceClassifierOutputWithPast,
17
+ )
18
+ from transformers.modeling_utils import PreTrainedModel
19
+ from transformers.utils import logging, is_torch_npu_available
20
+ from transformers.generation.logits_process import LogitsProcessor
21
+ from transformers.generation.utils import ModelOutput
22
+
23
+ from .configuration_chatglm import ChatGLMConfig
24
+
25
+ try:
26
+ from transformers.utils import is_flash_attn_greater_or_equal_2_10, is_flash_attn_2_available
27
+
28
+ if is_flash_attn_2_available():
29
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
30
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
31
+ except:
32
+ pass
33
+
34
+ # flags required to enable jit fusion kernels
35
+
36
+ if sys.platform != 'darwin' and not is_torch_npu_available():
37
+ torch._C._jit_set_profiling_mode(False)
38
+ torch._C._jit_set_profiling_executor(False)
39
+ torch._C._jit_override_can_fuse_on_cpu(True)
40
+ torch._C._jit_override_can_fuse_on_gpu(True)
41
+
42
+ logger = logging.get_logger(__name__)
43
+
44
+ _CHECKPOINT_FOR_DOC = "THUDM/ChatGLM"
45
+ _CONFIG_FOR_DOC = "ChatGLMConfig"
46
+
47
+
48
+ def default_init(cls, *args, **kwargs):
49
+ return cls(*args, **kwargs)
50
+
51
+
52
+ class InvalidScoreLogitsProcessor(LogitsProcessor):
53
+ def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
54
+ if torch.isnan(scores).any() or torch.isinf(scores).any():
55
+ scores.zero_()
56
+ scores[..., 198] = 5e4
57
+ return scores
58
+
59
+
60
+ def split_tensor_along_last_dim(
61
+ tensor: torch.Tensor,
62
+ num_partitions: int,
63
+ contiguous_split_chunks: bool = False,
64
+ ) -> List[torch.Tensor]:
65
+ """Split a tensor along its last dimension.
66
+ Arguments:
67
+ tensor: input tensor.
68
+ num_partitions: number of partitions to split the tensor
69
+ contiguous_split_chunks: If True, make each chunk contiguous
70
+ in memory.
71
+ Returns:
72
+ A list of Tensors
73
+ """
74
+ # Get the size and dimension.
75
+ last_dim = tensor.dim() - 1
76
+ last_dim_size = tensor.size()[last_dim] // num_partitions
77
+ # Split.
78
+ tensor_list = torch.split(tensor, last_dim_size, dim=last_dim)
79
+ # Note: torch.split does not create contiguous tensors by default.
80
+ if contiguous_split_chunks:
81
+ return tuple(chunk.contiguous() for chunk in tensor_list)
82
+
83
+ return tensor_list
84
+
85
+
86
+ class RotaryEmbedding(nn.Module):
87
+ def __init__(self, dim, rope_ratio=1, original_impl=False, device=None, dtype=None):
88
+ super().__init__()
89
+ inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2, device=device).to(dtype=dtype) / dim))
90
+ self.register_buffer("inv_freq", inv_freq)
91
+ self.dim = dim
92
+ self.original_impl = original_impl
93
+ self.rope_ratio = rope_ratio
94
+
95
+ def forward_impl(
96
+ self, seq_len: int, n_elem: int, dtype: torch.dtype, device: torch.device, base: int = 10000
97
+ ):
98
+ """Enhanced Transformer with Rotary Position Embedding.
99
+ Derived from: https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/
100
+ transformers/rope/__init__.py. MIT License:
101
+ https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/license.
102
+ """
103
+ # $\Theta = {\theta_i = 10000^{\frac{2(i-1)}{d}}, i \in [1, 2, ..., \frac{d}{2}]}$
104
+ base = base * self.rope_ratio
105
+ theta = 1.0 / (base ** (torch.arange(0, n_elem, 2, dtype=torch.float, device=device) / n_elem))
106
+
107
+ # Create position indexes `[0, 1, ..., seq_len - 1]`
108
+ seq_idx = torch.arange(seq_len, dtype=torch.float, device=device)
109
+
110
+ # Calculate the product of position index and $\theta_i$
111
+ idx_theta = torch.outer(seq_idx, theta).float()
112
+
113
+ cache = torch.stack([torch.cos(idx_theta), torch.sin(idx_theta)], dim=-1)
114
+
115
+ # this is to mimic the behaviour of complex32, else we will get different results
116
+ if dtype in (torch.float16, torch.bfloat16, torch.int8):
117
+ cache = cache.bfloat16() if dtype == torch.bfloat16 else cache.half()
118
+ return cache
119
+
120
+ def forward(self, max_seq_len, offset=0):
121
+ return self.forward_impl(
122
+ max_seq_len, self.dim, dtype=self.inv_freq.dtype, device=self.inv_freq.device
123
+ )
124
+
125
+
126
+ @torch.jit.script
127
+ def apply_rotary_pos_emb(x: torch.Tensor, rope_cache: torch.Tensor) -> torch.Tensor:
128
+ # x: [b, np, sq, hn]
129
+ b, np, sq, hn = x.size(0), x.size(1), x.size(2), x.size(3)
130
+ rot_dim = rope_cache.shape[-2] * 2
131
+ x, x_pass = x[..., :rot_dim], x[..., rot_dim:]
132
+ # truncate to support variable sizes
133
+ rope_cache = rope_cache[:, :sq]
134
+ xshaped = x.reshape(b, np, sq, rot_dim // 2, 2)
135
+ rope_cache = rope_cache.view(-1, 1, sq, xshaped.size(3), 2)
136
+ x_out2 = torch.stack(
137
+ [
138
+ xshaped[..., 0] * rope_cache[..., 0] - xshaped[..., 1] * rope_cache[..., 1],
139
+ xshaped[..., 1] * rope_cache[..., 0] + xshaped[..., 0] * rope_cache[..., 1],
140
+ ],
141
+ -1,
142
+ )
143
+ x_out2 = x_out2.flatten(3)
144
+ return torch.cat((x_out2, x_pass), dim=-1)
145
+
146
+
147
+ class RMSNorm(torch.nn.Module):
148
+ def __init__(self, normalized_shape, eps=1e-5, device=None, dtype=None, **kwargs):
149
+ super().__init__()
150
+ self.weight = torch.nn.Parameter(torch.empty(normalized_shape, device=device, dtype=dtype))
151
+ self.eps = eps
152
+
153
+ def forward(self, hidden_states: torch.Tensor):
154
+ input_dtype = hidden_states.dtype
155
+ variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
156
+ hidden_states = hidden_states * torch.rsqrt(variance + self.eps)
157
+
158
+ return (self.weight * hidden_states).to(input_dtype)
159
+
160
+
161
+ class CoreAttention(torch.nn.Module):
162
+ def __init__(self, config: ChatGLMConfig, layer_number):
163
+ super(CoreAttention, self).__init__()
164
+ self.config = config
165
+ self.apply_query_key_layer_scaling = config.apply_query_key_layer_scaling
166
+ self.attention_softmax_in_fp32 = config.attention_softmax_in_fp32
167
+ if self.apply_query_key_layer_scaling:
168
+ self.attention_softmax_in_fp32 = True
169
+ self.layer_number = max(1, layer_number)
170
+ self.is_causal = True
171
+
172
+ projection_size = config.kv_channels * config.num_attention_heads
173
+
174
+ # Per attention head and per partition values.
175
+ self.hidden_size_per_partition = projection_size
176
+ self.hidden_size_per_attention_head = projection_size // config.num_attention_heads
177
+ self.num_attention_heads_per_partition = config.num_attention_heads
178
+
179
+ coeff = None
180
+ self.norm_factor = math.sqrt(self.hidden_size_per_attention_head)
181
+ if self.apply_query_key_layer_scaling:
182
+ coeff = self.layer_number
183
+ self.norm_factor *= coeff
184
+ self.coeff = coeff
185
+
186
+ self.attention_dropout = torch.nn.Dropout(config.attention_dropout)
187
+
188
+ def forward(self, query_layer, key_layer, value_layer, attention_mask):
189
+ # [b, np, sq, sk]
190
+ output_size = (query_layer.size(0), query_layer.size(1), query_layer.size(2), key_layer.size(2))
191
+
192
+ # [b, np, sq, hn] -> [b * np, sq, hn]
193
+ query_layer = query_layer.view(output_size[0] * output_size[1], output_size[2], -1)
194
+ # [b, np, sk, hn] -> [b * np, sk, hn]
195
+ key_layer = key_layer.view(output_size[0] * output_size[1], output_size[3], -1)
196
+
197
+ # preallocting input tensor: [b * np, sq, sk]
198
+ matmul_input_buffer = torch.empty(
199
+ output_size[0] * output_size[1], output_size[2], output_size[3], dtype=query_layer.dtype,
200
+ device=query_layer.device
201
+ )
202
+
203
+ # Raw attention scores. [b * np, sq, sk]
204
+ matmul_result = torch.baddbmm(
205
+ matmul_input_buffer,
206
+ query_layer, # [b * np, sq, hn]
207
+ key_layer.transpose(1, 2), # [b * np, hn, sk]
208
+ beta=0.0,
209
+ alpha=(1.0 / self.norm_factor),
210
+ )
211
+
212
+ # change view to [b, np, sq, sk]
213
+ attention_scores = matmul_result.view(*output_size)
214
+
215
+ # ===========================
216
+ # Attention probs and dropout
217
+ # ===========================
218
+
219
+ # attention scores and attention mask [b, np, sq, sk]
220
+ if self.attention_softmax_in_fp32:
221
+ attention_scores = attention_scores.float()
222
+ if self.coeff is not None:
223
+ attention_scores = attention_scores * self.coeff
224
+ if attention_mask is None and attention_scores.shape[2] == attention_scores.shape[3]:
225
+ attention_mask = torch.ones(output_size[0], 1, output_size[2], output_size[3],
226
+ device=attention_scores.device, dtype=torch.bool)
227
+ attention_mask.tril_()
228
+ attention_mask = ~attention_mask
229
+ if attention_mask is not None:
230
+ attention_scores = attention_scores.masked_fill(attention_mask, float("-inf"))
231
+ attention_probs = F.softmax(attention_scores, dim=-1)
232
+ attention_probs = attention_probs.type_as(value_layer)
233
+
234
+ # This is actually dropping out entire tokens to attend to, which might
235
+ # seem a bit unusual, but is taken from the original Transformer paper.
236
+ attention_probs = self.attention_dropout(attention_probs)
237
+
238
+ # query layer shape: [b * np, sq, hn]
239
+ # value layer shape: [b, np, sk, hn]
240
+ # attention shape: [b, np, sq, sk]
241
+ # context layer shape: [b, np, sq, hn]
242
+ output_size = (value_layer.size(0), value_layer.size(1), query_layer.size(1), value_layer.size(3))
243
+ # change view [b * np, sk, hn]
244
+ value_layer = value_layer.view(output_size[0] * output_size[1], value_layer.size(2), -1)
245
+ # change view [b * np, sq, sk]
246
+ attention_probs = attention_probs.view(output_size[0] * output_size[1], output_size[2], -1)
247
+ # matmul: [b * np, sq, hn]
248
+ context_layer = torch.bmm(attention_probs, value_layer)
249
+ # change view [b, np, sq, hn]
250
+ context_layer = context_layer.view(*output_size)
251
+ # [b, np, sq, hn] --> [b, sq, np, hn]
252
+ context_layer = context_layer.transpose(1, 2).contiguous()
253
+ # [b, sq, np, hn] --> [b, sq, hp]
254
+ new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
255
+ context_layer = context_layer.reshape(*new_context_layer_shape)
256
+
257
+ return context_layer
258
+
259
+
260
+ class SdpaAttention(CoreAttention):
261
+ def forward(self, query_layer, key_layer, value_layer, attention_mask):
262
+ if attention_mask is None and query_layer.shape[2] == key_layer.shape[2]:
263
+ context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer,
264
+ is_causal=True,
265
+ dropout_p=self.config.attention_dropout if self.training else 0.0)
266
+ else:
267
+ if attention_mask is not None:
268
+ attention_mask = ~attention_mask
269
+ context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer,
270
+ attention_mask,
271
+ dropout_p=self.config.attention_dropout if self.training else 0.0)
272
+ context_layer = context_layer.transpose(1, 2).contiguous()
273
+ new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
274
+ context_layer = context_layer.reshape(*new_context_layer_shape)
275
+ return context_layer
276
+
277
+
278
+ def _get_unpad_data(attention_mask):
279
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
280
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
281
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
282
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
283
+ return (
284
+ indices,
285
+ cu_seqlens,
286
+ max_seqlen_in_batch,
287
+ )
288
+
289
+
290
+ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2
291
+ class FlashAttention2(CoreAttention):
292
+ def __init__(self, *args, **kwargs):
293
+ super().__init__(*args, **kwargs)
294
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
295
+
296
+ def forward(self, query_states, key_states, value_states, attention_mask):
297
+ query_states = query_states.transpose(1, 2)
298
+ key_states = key_states.transpose(1, 2)
299
+ value_states = value_states.transpose(1, 2)
300
+ batch_size, query_length = query_states.shape[:2]
301
+ if not self._flash_attn_uses_top_left_mask:
302
+ causal = self.is_causal
303
+ else:
304
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
305
+ causal = self.is_causal and query_length != 1
306
+ dropout = self.config.attention_dropout if self.training else 0.0
307
+ # Contains at least one padding token in the sequence
308
+ if attention_mask is not None:
309
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
310
+ query_states, key_states, value_states, attention_mask, query_length
311
+ )
312
+
313
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
314
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
315
+
316
+ attn_output_unpad = flash_attn_varlen_func(
317
+ query_states,
318
+ key_states,
319
+ value_states,
320
+ cu_seqlens_q=cu_seqlens_q,
321
+ cu_seqlens_k=cu_seqlens_k,
322
+ max_seqlen_q=max_seqlen_in_batch_q,
323
+ max_seqlen_k=max_seqlen_in_batch_k,
324
+ dropout_p=dropout,
325
+ softmax_scale=None,
326
+ causal=causal,
327
+ )
328
+
329
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
330
+ else:
331
+ attn_output = flash_attn_func(
332
+ query_states, key_states, value_states, dropout, softmax_scale=None, causal=causal
333
+ )
334
+ attn_output = attn_output.reshape(batch_size, query_length, self.hidden_size_per_partition).contiguous()
335
+ return attn_output
336
+
337
+ def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
338
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
339
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
340
+
341
+ key_layer = index_first_axis(
342
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
343
+ )
344
+ value_layer = index_first_axis(
345
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
346
+ )
347
+ if query_length == kv_seq_len:
348
+ query_layer = index_first_axis(
349
+ query_layer.reshape(batch_size * kv_seq_len, self.num_attention_heads_per_partition, head_dim),
350
+ indices_k
351
+ )
352
+ cu_seqlens_q = cu_seqlens_k
353
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
354
+ indices_q = indices_k
355
+ elif query_length == 1:
356
+ max_seqlen_in_batch_q = 1
357
+ cu_seqlens_q = torch.arange(
358
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
359
+ ) # There is a memcpy here, that is very bad.
360
+ indices_q = cu_seqlens_q[:-1]
361
+ query_layer = query_layer.squeeze(1)
362
+ else:
363
+ # The -q_len: slice assumes left padding.
364
+ attention_mask = attention_mask[:, -query_length:]
365
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
366
+
367
+ return (
368
+ query_layer,
369
+ key_layer,
370
+ value_layer,
371
+ indices_q,
372
+ (cu_seqlens_q, cu_seqlens_k),
373
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
374
+ )
375
+
376
+
377
+ CORE_ATTENTION_CLASSES = {
378
+ "eager": CoreAttention,
379
+ "sdpa": SdpaAttention,
380
+ "flash_attention_2": FlashAttention2
381
+ }
382
+
383
+
384
+ class SelfAttention(torch.nn.Module):
385
+ """Parallel self-attention layer abstract class.
386
+ Self-attention layer takes input with size [s, b, h]
387
+ and returns output of the same size.
388
+ """
389
+
390
+ def __init__(self, config: ChatGLMConfig, layer_number, device=None):
391
+ super(SelfAttention, self).__init__()
392
+ self.layer_number = max(1, layer_number)
393
+
394
+ self.projection_size = config.kv_channels * config.num_attention_heads
395
+
396
+ # Per attention head and per partition values.
397
+ self.hidden_size_per_attention_head = self.projection_size // config.num_attention_heads
398
+ self.num_attention_heads_per_partition = config.num_attention_heads
399
+
400
+ self.multi_query_attention = config.multi_query_attention
401
+ self.qkv_hidden_size = 3 * self.projection_size
402
+ if self.multi_query_attention:
403
+ self.num_multi_query_groups_per_partition = config.multi_query_group_num
404
+ self.qkv_hidden_size = (
405
+ self.projection_size + 2 * self.hidden_size_per_attention_head * config.multi_query_group_num
406
+ )
407
+ self.query_key_value = nn.Linear(config.hidden_size, self.qkv_hidden_size,
408
+ bias=config.add_bias_linear or config.add_qkv_bias,
409
+ device=device, **_config_to_kwargs(config)
410
+ )
411
+
412
+ self.core_attention = CORE_ATTENTION_CLASSES[config._attn_implementation](config, self.layer_number)
413
+
414
+ # Output.
415
+ self.dense = nn.Linear(self.projection_size, config.hidden_size, bias=config.add_bias_linear,
416
+ device=device, **_config_to_kwargs(config)
417
+ )
418
+
419
+ def _allocate_memory(self, inference_max_sequence_len, batch_size, device=None, dtype=None):
420
+ if self.multi_query_attention:
421
+ num_attention_heads = self.num_multi_query_groups_per_partition
422
+ else:
423
+ num_attention_heads = self.num_attention_heads_per_partition
424
+ return torch.empty(
425
+ inference_max_sequence_len,
426
+ batch_size,
427
+ num_attention_heads,
428
+ self.hidden_size_per_attention_head,
429
+ dtype=dtype,
430
+ device=device,
431
+ )
432
+
433
+ def forward(
434
+ self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True
435
+ ):
436
+ # hidden_states: [b, sq, h]
437
+
438
+ # =================================================
439
+ # Pre-allocate memory for key-values for inference.
440
+ # =================================================
441
+ # =====================
442
+ # Query, Key, and Value
443
+ # =====================
444
+
445
+ # Attention heads [b, sq, h] --> [b, sq, (np * 3 * hn)]
446
+ mixed_x_layer = self.query_key_value(hidden_states)
447
+
448
+ if self.multi_query_attention:
449
+ (query_layer, key_layer, value_layer) = mixed_x_layer.split(
450
+ [
451
+ self.num_attention_heads_per_partition * self.hidden_size_per_attention_head,
452
+ self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head,
453
+ self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head,
454
+ ],
455
+ dim=-1,
456
+ )
457
+ query_layer = query_layer.view(
458
+ query_layer.size()[:-1] + (self.num_attention_heads_per_partition, self.hidden_size_per_attention_head)
459
+ )
460
+ key_layer = key_layer.view(
461
+ key_layer.size()[:-1] + (self.num_multi_query_groups_per_partition, self.hidden_size_per_attention_head)
462
+ )
463
+ value_layer = value_layer.view(
464
+ value_layer.size()[:-1]
465
+ + (self.num_multi_query_groups_per_partition, self.hidden_size_per_attention_head)
466
+ )
467
+ else:
468
+ new_tensor_shape = mixed_x_layer.size()[:-1] + \
469
+ (self.num_attention_heads_per_partition,
470
+ 3 * self.hidden_size_per_attention_head)
471
+ mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)
472
+
473
+ # [b, sq, np, 3 * hn] --> 3 [b, sq, np, hn]
474
+ (query_layer, key_layer, value_layer) = split_tensor_along_last_dim(mixed_x_layer, 3)
475
+
476
+ # [b, sq, np, hn] -> [b, np, sq, hn]
477
+ query_layer, key_layer, value_layer = [k.transpose(1, 2) for k in [query_layer, key_layer, value_layer]]
478
+
479
+ # apply relative positional encoding (rotary embedding)
480
+ if rotary_pos_emb is not None:
481
+ query_layer = apply_rotary_pos_emb(query_layer, rotary_pos_emb)
482
+ key_layer = apply_rotary_pos_emb(key_layer, rotary_pos_emb)
483
+
484
+ # adjust key and value for inference
485
+ if kv_cache is not None:
486
+ cache_k, cache_v = kv_cache
487
+ key_layer = torch.cat((cache_k, key_layer), dim=2)
488
+ value_layer = torch.cat((cache_v, value_layer), dim=2)
489
+ if use_cache:
490
+ if kv_cache is None:
491
+ kv_cache = torch.cat((key_layer.unsqueeze(0).unsqueeze(0), value_layer.unsqueeze(0).unsqueeze(0)),
492
+ dim=1)
493
+ else:
494
+ kv_cache = (key_layer, value_layer)
495
+ else:
496
+ kv_cache = None
497
+
498
+ if self.multi_query_attention:
499
+ key_layer = key_layer.unsqueeze(2)
500
+ key_layer = key_layer.expand(
501
+ -1, -1, self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition, -1, -1
502
+ )
503
+ key_layer = key_layer.contiguous().view(
504
+ key_layer.size()[:1] + (self.num_attention_heads_per_partition,) + key_layer.size()[3:]
505
+ )
506
+ value_layer = value_layer.unsqueeze(2)
507
+ value_layer = value_layer.expand(
508
+ -1, -1, self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition, -1, -1
509
+ )
510
+ value_layer = value_layer.contiguous().view(
511
+ value_layer.size()[:1] + (self.num_attention_heads_per_partition,) + value_layer.size()[3:]
512
+ )
513
+
514
+ # ==================================
515
+ # core attention computation
516
+ # ==================================
517
+
518
+ context_layer = self.core_attention(query_layer, key_layer, value_layer, attention_mask)
519
+
520
+ # =================
521
+ # Output. [sq, b, h]
522
+ # =================
523
+
524
+ output = self.dense(context_layer)
525
+
526
+ return output, kv_cache
527
+
528
+
529
+ def _config_to_kwargs(args):
530
+ common_kwargs = {
531
+ "dtype": args.torch_dtype,
532
+ }
533
+ return common_kwargs
534
+
535
+
536
+ class MLP(torch.nn.Module):
537
+ """MLP.
538
+ MLP will take the input with h hidden state, project it to 4*h
539
+ hidden dimension, perform nonlinear transformation, and project the
540
+ state back into h hidden dimension.
541
+ """
542
+
543
+ def __init__(self, config: ChatGLMConfig, device=None):
544
+ super(MLP, self).__init__()
545
+
546
+ self.add_bias = config.add_bias_linear
547
+
548
+ # Project to 4h. If using swiglu double the output width, see https://arxiv.org/pdf/2002.05202.pdf
549
+ self.dense_h_to_4h = nn.Linear(
550
+ config.hidden_size,
551
+ config.ffn_hidden_size * 2,
552
+ bias=self.add_bias,
553
+ device=device,
554
+ **_config_to_kwargs(config)
555
+ )
556
+
557
+ def swiglu(x):
558
+ x = torch.chunk(x, 2, dim=-1)
559
+ return F.silu(x[0]) * x[1]
560
+
561
+ self.activation_func = swiglu
562
+
563
+ # Project back to h.
564
+ self.dense_4h_to_h = nn.Linear(
565
+ config.ffn_hidden_size,
566
+ config.hidden_size,
567
+ bias=self.add_bias,
568
+ device=device,
569
+ **_config_to_kwargs(config)
570
+ )
571
+
572
+ def forward(self, hidden_states):
573
+ # [s, b, 4hp]
574
+ intermediate_parallel = self.dense_h_to_4h(hidden_states)
575
+ intermediate_parallel = self.activation_func(intermediate_parallel)
576
+ # [s, b, h]
577
+ output = self.dense_4h_to_h(intermediate_parallel)
578
+ return output
579
+
580
+
581
+ class GLMBlock(torch.nn.Module):
582
+ """A single transformer layer.
583
+ Transformer layer takes input with size [s, b, h] and returns an
584
+ output of the same size.
585
+ """
586
+
587
+ def __init__(self, config: ChatGLMConfig, layer_number, device=None):
588
+ super(GLMBlock, self).__init__()
589
+ self.layer_number = layer_number
590
+
591
+ self.apply_residual_connection_post_layernorm = config.apply_residual_connection_post_layernorm
592
+
593
+ self.fp32_residual_connection = config.fp32_residual_connection
594
+
595
+ LayerNormFunc = RMSNorm if config.rmsnorm else LayerNorm
596
+ # Layernorm on the input data.
597
+ self.input_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device,
598
+ dtype=config.torch_dtype)
599
+
600
+ # Self attention.
601
+ self.self_attention = SelfAttention(config, layer_number, device=device)
602
+ self.hidden_dropout = config.hidden_dropout
603
+
604
+ # Layernorm on the attention output
605
+ self.post_attention_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device,
606
+ dtype=config.torch_dtype)
607
+
608
+ # MLP
609
+ self.mlp = MLP(config, device=device)
610
+
611
+ def forward(
612
+ self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True,
613
+ ):
614
+ # hidden_states: [s, b, h]
615
+
616
+ # Layer norm at the beginning of the transformer layer.
617
+ layernorm_output = self.input_layernorm(hidden_states)
618
+ # Self attention.
619
+ attention_output, kv_cache = self.self_attention(
620
+ layernorm_output,
621
+ attention_mask,
622
+ rotary_pos_emb,
623
+ kv_cache=kv_cache,
624
+ use_cache=use_cache
625
+ )
626
+
627
+ # Residual connection.
628
+ if self.apply_residual_connection_post_layernorm:
629
+ residual = layernorm_output
630
+ else:
631
+ residual = hidden_states
632
+
633
+ layernorm_input = torch.nn.functional.dropout(attention_output, p=self.hidden_dropout, training=self.training)
634
+ layernorm_input = residual + layernorm_input
635
+
636
+ # Layer norm post the self attention.
637
+ layernorm_output = self.post_attention_layernorm(layernorm_input)
638
+
639
+ # MLP.
640
+ mlp_output = self.mlp(layernorm_output)
641
+
642
+ # Second residual connection.
643
+ if self.apply_residual_connection_post_layernorm:
644
+ residual = layernorm_output
645
+ else:
646
+ residual = layernorm_input
647
+
648
+ output = torch.nn.functional.dropout(mlp_output, p=self.hidden_dropout, training=self.training)
649
+ output = residual + output
650
+
651
+ return output, kv_cache
652
+
653
+
654
+ class GLMTransformer(torch.nn.Module):
655
+ """Transformer class."""
656
+
657
+ def __init__(self, config: ChatGLMConfig, device=None):
658
+ super(GLMTransformer, self).__init__()
659
+
660
+ self.fp32_residual_connection = config.fp32_residual_connection
661
+ self.post_layer_norm = config.post_layer_norm
662
+
663
+ # Number of layers.
664
+ self.num_layers = config.num_layers
665
+
666
+ # Transformer layers.
667
+ def build_layer(layer_number):
668
+ return GLMBlock(config, layer_number, device=device)
669
+
670
+ self.layers = torch.nn.ModuleList([build_layer(i + 1) for i in range(self.num_layers)])
671
+
672
+ if self.post_layer_norm:
673
+ LayerNormFunc = RMSNorm if config.rmsnorm else LayerNorm
674
+ # Final layer norm before output.
675
+ self.final_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device,
676
+ dtype=config.torch_dtype)
677
+
678
+ self.gradient_checkpointing = False
679
+
680
+ def _get_layer(self, layer_number):
681
+ return self.layers[layer_number]
682
+
683
+ def forward(
684
+ self, hidden_states, attention_mask, rotary_pos_emb, kv_caches=None,
685
+ use_cache: Optional[bool] = True,
686
+ output_hidden_states: Optional[bool] = False,
687
+ ):
688
+ if not kv_caches:
689
+ kv_caches = [None for _ in range(self.num_layers)]
690
+ presents = () if use_cache else None
691
+ if self.gradient_checkpointing and self.training:
692
+ if use_cache:
693
+ logger.warning_once(
694
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
695
+ )
696
+ use_cache = False
697
+
698
+ all_self_attentions = None
699
+ all_hidden_states = () if output_hidden_states else None
700
+ for index in range(self.num_layers):
701
+ if output_hidden_states:
702
+ all_hidden_states = all_hidden_states + (hidden_states,)
703
+
704
+ layer = self._get_layer(index)
705
+ if self.gradient_checkpointing and self.training:
706
+ layer_ret = torch.utils.checkpoint.checkpoint(
707
+ layer,
708
+ hidden_states,
709
+ attention_mask,
710
+ rotary_pos_emb,
711
+ kv_caches[index],
712
+ use_cache,
713
+ use_reentrant=False
714
+ )
715
+ else:
716
+ layer_ret = layer(
717
+ hidden_states,
718
+ attention_mask,
719
+ rotary_pos_emb,
720
+ kv_cache=kv_caches[index],
721
+ use_cache=use_cache
722
+ )
723
+ hidden_states, kv_cache = layer_ret
724
+ if use_cache:
725
+ # token by token decoding, use tuple format
726
+ if kv_caches[0] is not None:
727
+ presents = presents + (kv_cache,)
728
+ # prefilling in decoding, use tensor format to save cuda memory
729
+ else:
730
+ if len(presents) == 0:
731
+ presents = kv_cache
732
+ else:
733
+ presents = torch.cat((presents, kv_cache.to(presents.device)), dim=0)
734
+
735
+ if output_hidden_states:
736
+ all_hidden_states = all_hidden_states + (hidden_states,)
737
+
738
+ # Final layer norm.
739
+ if self.post_layer_norm:
740
+ hidden_states = self.final_layernorm(hidden_states)
741
+
742
+ return hidden_states, presents, all_hidden_states, all_self_attentions
743
+
744
+
745
+ class ChatGLMPreTrainedModel(PreTrainedModel):
746
+ """
747
+ An abstract class to handle weights initialization and
748
+ a simple interface for downloading and loading pretrained models.
749
+ """
750
+
751
+ is_parallelizable = False
752
+ supports_gradient_checkpointing = True
753
+ config_class = ChatGLMConfig
754
+ base_model_prefix = "transformer"
755
+ _no_split_modules = ["GLMBlock"]
756
+ _supports_flash_attn_2 = True
757
+ _supports_sdpa = True
758
+
759
+ def _init_weights(self, module: nn.Module):
760
+ """Initialize the weights."""
761
+ return
762
+
763
+ def get_masks(self, input_ids, past_key_values, padding_mask=None):
764
+ if self.config._attn_implementation == "flash_attention_2":
765
+ if padding_mask is not None and not padding_mask.all():
766
+ return padding_mask
767
+ return None
768
+ batch_size, seq_length = input_ids.shape
769
+ full_attention_mask = torch.ones(batch_size, seq_length, seq_length, device=input_ids.device)
770
+ full_attention_mask.tril_()
771
+ past_length = 0
772
+ if past_key_values:
773
+ past_length = past_key_values[0][0].shape[2]
774
+ if past_length:
775
+ full_attention_mask = torch.cat((torch.ones(batch_size, seq_length, past_length,
776
+ device=input_ids.device), full_attention_mask), dim=-1)
777
+ if padding_mask is not None:
778
+ full_attention_mask = full_attention_mask * padding_mask.unsqueeze(1)
779
+ if not past_length and padding_mask is not None:
780
+ full_attention_mask -= padding_mask.unsqueeze(-1) - 1
781
+ full_attention_mask = (full_attention_mask < 0.5).bool()
782
+ full_attention_mask.unsqueeze_(1)
783
+ return full_attention_mask
784
+
785
+ def get_position_ids(self, input_ids, device):
786
+ batch_size, seq_length = input_ids.shape
787
+ position_ids = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1)
788
+ return position_ids
789
+
790
+ class Embedding(torch.nn.Module):
791
+ """Language model embeddings."""
792
+
793
+ def __init__(self, config: ChatGLMConfig, device=None):
794
+ super(Embedding, self).__init__()
795
+
796
+ self.hidden_size = config.hidden_size
797
+ # Word embeddings (parallel).
798
+ self.word_embeddings = nn.Embedding(
799
+ config.padded_vocab_size,
800
+ self.hidden_size,
801
+ dtype=config.torch_dtype,
802
+ device=device
803
+ )
804
+ self.fp32_residual_connection = config.fp32_residual_connection
805
+
806
+ def forward(self, input_ids):
807
+ # Embeddings.
808
+ words_embeddings = self.word_embeddings(input_ids)
809
+ embeddings = words_embeddings
810
+ # If the input flag for fp32 residual connection is set, convert for float.
811
+ if self.fp32_residual_connection:
812
+ embeddings = embeddings.float()
813
+ return embeddings
814
+
815
+
816
+ class ChatGLMModel(ChatGLMPreTrainedModel):
817
+ def __init__(self, config: ChatGLMConfig, device=None, empty_init=True):
818
+ super().__init__(config)
819
+ if empty_init:
820
+ init_method = skip_init
821
+ else:
822
+ init_method = default_init
823
+ init_kwargs = {}
824
+ if device is not None:
825
+ init_kwargs["device"] = device
826
+ self.embedding = init_method(Embedding, config, **init_kwargs)
827
+ self.num_layers = config.num_layers
828
+ self.multi_query_group_num = config.multi_query_group_num
829
+ self.kv_channels = config.kv_channels
830
+
831
+ # Rotary positional embeddings
832
+ self.seq_length = config.seq_length
833
+ rotary_dim = (
834
+ config.hidden_size // config.num_attention_heads if config.kv_channels is None else config.kv_channels
835
+ )
836
+
837
+ self.rotary_pos_emb = RotaryEmbedding(rotary_dim // 2, rope_ratio=config.rope_ratio,
838
+ original_impl=config.original_rope,
839
+ device=device, dtype=config.torch_dtype)
840
+ self.encoder = init_method(GLMTransformer, config, **init_kwargs)
841
+ self.output_layer = init_method(nn.Linear, config.hidden_size, config.padded_vocab_size, bias=False,
842
+ dtype=config.torch_dtype, **init_kwargs)
843
+
844
+ def get_input_embeddings(self):
845
+ return self.embedding.word_embeddings
846
+
847
+ def set_input_embeddings(self, value):
848
+ self.embedding.word_embeddings = value
849
+
850
+ def forward(
851
+ self,
852
+ input_ids,
853
+ position_ids: Optional[torch.Tensor] = None,
854
+ attention_mask: Optional[torch.BoolTensor] = None,
855
+ full_attention_mask: Optional[torch.BoolTensor] = None,
856
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
857
+ inputs_embeds: Optional[torch.Tensor] = None,
858
+ use_cache: Optional[bool] = None,
859
+ output_attentions: Optional[bool] = None,
860
+ output_hidden_states: Optional[bool] = None,
861
+ return_dict: Optional[bool] = None,
862
+ ):
863
+ output_hidden_states = (
864
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
865
+ )
866
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
867
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
868
+
869
+ batch_size, seq_length = input_ids.shape
870
+
871
+ if inputs_embeds is None:
872
+ inputs_embeds = self.embedding(input_ids)
873
+
874
+ if full_attention_mask is None:
875
+ if (attention_mask is not None and not attention_mask.all()) or (past_key_values and seq_length != 1):
876
+ full_attention_mask = self.get_masks(input_ids, past_key_values, padding_mask=attention_mask)
877
+
878
+ # Rotary positional embeddings
879
+ rotary_pos_emb = self.rotary_pos_emb(self.seq_length)
880
+ if position_ids is not None:
881
+ rotary_pos_emb = rotary_pos_emb[position_ids]
882
+ else:
883
+ rotary_pos_emb = rotary_pos_emb[None, :seq_length]
884
+
885
+ # Run encoder.
886
+ hidden_states, presents, all_hidden_states, all_self_attentions = self.encoder(
887
+ inputs_embeds, full_attention_mask, rotary_pos_emb=rotary_pos_emb,
888
+ kv_caches=past_key_values, use_cache=use_cache, output_hidden_states=output_hidden_states
889
+ )
890
+ if presents is not None and type(presents) is torch.Tensor:
891
+ presents = presents.split(1, dim=0)
892
+ presents = list(presents)
893
+ presents = [list(x.squeeze(0).split(1, dim=0)) for x in presents]
894
+ presents = [tuple([x.squeeze(0) for x in y]) for y in presents]
895
+ presents = tuple(presents)
896
+
897
+ if not return_dict:
898
+ return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
899
+
900
+ return BaseModelOutputWithPast(
901
+ last_hidden_state=hidden_states,
902
+ past_key_values=presents,
903
+ hidden_states=all_hidden_states,
904
+ attentions=all_self_attentions,
905
+ )
906
+
907
+
908
+ class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel):
909
+ def __init__(self, config: ChatGLMConfig, empty_init=True, device=None):
910
+ super().__init__(config)
911
+
912
+ self.max_sequence_length = config.max_length
913
+ self.transformer = ChatGLMModel(config, empty_init=empty_init, device=device)
914
+ self.config = config
915
+
916
+ def _update_model_kwargs_for_generation(
917
+ self,
918
+ outputs: ModelOutput,
919
+ model_kwargs: Dict[str, Any],
920
+ is_encoder_decoder: bool = False,
921
+ ) -> Dict[str, Any]:
922
+ # update past_key_values
923
+ cache_name, cache = self._extract_past_from_model_output(outputs)
924
+ model_kwargs[cache_name] = cache
925
+
926
+ # update attention mask
927
+ if "attention_mask" in model_kwargs:
928
+ attention_mask = model_kwargs["attention_mask"]
929
+ model_kwargs["attention_mask"] = torch.cat(
930
+ [attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1
931
+ )
932
+
933
+ # update position ids
934
+ if "position_ids" in model_kwargs:
935
+ position_ids = model_kwargs["position_ids"]
936
+ new_position_id = position_ids[..., -1:].clone()
937
+ new_position_id += 1
938
+ model_kwargs["position_ids"] = torch.cat(
939
+ [position_ids, new_position_id], dim=-1
940
+ )
941
+
942
+ model_kwargs["is_first_forward"] = False
943
+ return model_kwargs
944
+
945
+ def prepare_inputs_for_generation(
946
+ self,
947
+ input_ids: torch.LongTensor,
948
+ past_key_values: Optional[torch.Tensor] = None,
949
+ attention_mask: Optional[torch.Tensor] = None,
950
+ position_ids: Optional[torch.Tensor] = None,
951
+ use_cache: Optional[bool] = None,
952
+ is_first_forward: bool = True,
953
+ **kwargs
954
+ ) -> dict:
955
+ # only last token for input_ids if past is not None
956
+ if position_ids is None:
957
+ position_ids = self.get_position_ids(input_ids, device=input_ids.device)
958
+ if not is_first_forward:
959
+ if past_key_values is not None:
960
+ position_ids = position_ids[..., -1:]
961
+ input_ids = input_ids[:, -1:]
962
+ return {
963
+ "input_ids": input_ids,
964
+ "past_key_values": past_key_values,
965
+ "position_ids": position_ids,
966
+ "attention_mask": attention_mask,
967
+ "return_last_logit": True,
968
+ "use_cache": use_cache
969
+ }
970
+
971
+ def forward(
972
+ self,
973
+ input_ids: Optional[torch.Tensor] = None,
974
+ position_ids: Optional[torch.Tensor] = None,
975
+ attention_mask: Optional[torch.Tensor] = None,
976
+ past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
977
+ inputs_embeds: Optional[torch.Tensor] = None,
978
+ labels: Optional[torch.Tensor] = None,
979
+ use_cache: Optional[bool] = None,
980
+ output_attentions: Optional[bool] = None,
981
+ output_hidden_states: Optional[bool] = None,
982
+ return_dict: Optional[bool] = None,
983
+ return_last_logit: Optional[bool] = False,
984
+ ):
985
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
986
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
987
+
988
+ transformer_outputs = self.transformer(
989
+ input_ids=input_ids,
990
+ position_ids=position_ids,
991
+ attention_mask=attention_mask,
992
+ past_key_values=past_key_values,
993
+ inputs_embeds=inputs_embeds,
994
+ use_cache=use_cache,
995
+ output_hidden_states=output_hidden_states,
996
+ return_dict=return_dict,
997
+ )
998
+
999
+ hidden_states = transformer_outputs[0]
1000
+ if return_last_logit:
1001
+ hidden_states = hidden_states[:, -1:]
1002
+ lm_logits = self.transformer.output_layer(hidden_states)
1003
+
1004
+ loss = None
1005
+ if labels is not None:
1006
+ lm_logits = lm_logits.to(torch.float32)
1007
+
1008
+ # Shift so that tokens < n predict n
1009
+ shift_logits = lm_logits[..., :-1, :].contiguous()
1010
+ shift_labels = labels[..., 1:].contiguous()
1011
+ # Flatten the tokens
1012
+ loss_fct = CrossEntropyLoss(ignore_index=-100)
1013
+ loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
1014
+
1015
+ lm_logits = lm_logits.to(hidden_states.dtype)
1016
+ loss = loss.to(hidden_states.dtype)
1017
+
1018
+ if not return_dict:
1019
+ output = (lm_logits,) + transformer_outputs[1:]
1020
+ return ((loss,) + output) if loss is not None else output
1021
+
1022
+ return CausalLMOutputWithPast(
1023
+ loss=loss,
1024
+ logits=lm_logits,
1025
+ past_key_values=transformer_outputs.past_key_values,
1026
+ hidden_states=transformer_outputs.hidden_states,
1027
+ attentions=transformer_outputs.attentions,
1028
+ )
1029
+
1030
+ @staticmethod
1031
+ def _reorder_cache(
1032
+ past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor
1033
+ ) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]:
1034
+ """
1035
+ This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
1036
+ [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
1037
+ beam_idx at every generation step.
1038
+ Output shares the same memory storage as `past`.
1039
+ """
1040
+ return tuple(
1041
+ (
1042
+ layer_past[0].index_select(0, beam_idx.to(layer_past[0].device)),
1043
+ layer_past[1].index_select(0, beam_idx.to(layer_past[1].device)),
1044
+ )
1045
+ for layer_past in past
1046
+ )
1047
+
1048
+ @torch.inference_mode()
1049
+ def chat(self, tokenizer, query: str, history: List[Dict] = None, role: str = "user",
1050
+ max_length: int = 8192, num_beams=1, do_sample=True, top_p=0.8, temperature=0.8,
1051
+ **kwargs):
1052
+ if history is None:
1053
+ history = []
1054
+ gen_kwargs = {"max_length": max_length, "num_beams": num_beams, "do_sample": do_sample, "top_p": top_p,
1055
+ "temperature": temperature, **kwargs}
1056
+ inputs = tokenizer.build_chat_input(query, history=history, role=role)
1057
+ inputs = inputs.to(self.device)
1058
+ eos_token_id = [tokenizer.eos_token_id, tokenizer.get_command("<|user|>"),
1059
+ tokenizer.get_command("<|observation|>")]
1060
+ outputs = self.generate(**inputs, **gen_kwargs, eos_token_id=eos_token_id)
1061
+ outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):-1]
1062
+ response = tokenizer.decode(outputs)
1063
+ history.append({"role": role, "content": query})
1064
+ return response, history
special_tokens_map.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "eos_token": "<|endoftext|>"
3
+ }
tokenization_chatglm.py ADDED
@@ -0,0 +1,265 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import regex as re
2
+ import base64
3
+ import os
4
+ import json
5
+ import tiktoken
6
+ from transformers import PreTrainedTokenizer
7
+ from typing import List, Optional, Union, Dict
8
+ from transformers import PreTrainedTokenizer
9
+ from transformers.utils import logging, PaddingStrategy
10
+ from transformers.tokenization_utils_base import EncodedInput, BatchEncoding
11
+
12
+
13
+ class ChatGLM4Tokenizer(PreTrainedTokenizer):
14
+ vocab_files_names = {"vocab_file": "tokenizer.model"}
15
+ model_input_names = ["input_ids", "attention_mask", "position_ids"]
16
+
17
+ def __init__(
18
+ self,
19
+ vocab_file,
20
+ padding_side="left",
21
+ clean_up_tokenization_spaces=False,
22
+ encode_special_tokens=False,
23
+ **kwargs
24
+ ):
25
+ self.name = "GLMTokenizer"
26
+ self.vocab_file = vocab_file
27
+ pat_str = "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
28
+ self.pat_str = re.compile(pat_str)
29
+ self.encode_special_tokens = encode_special_tokens
30
+
31
+ mergeable_ranks = {}
32
+ with open(vocab_file) as f:
33
+ for line in f:
34
+ token, rank = line.strip().split()
35
+ rank = int(rank)
36
+ token = base64.b64decode(token)
37
+ mergeable_ranks[token] = rank
38
+
39
+ self.mergeable_ranks = mergeable_ranks
40
+ self.special_tokens = ["<|endoftext|>", "[MASK]", "[gMASK]", "[sMASK]", "<sop>", "<eop>", "<|system|>",
41
+ "<|user|>", "<|assistant|>", "<|observation|>", "<|begin_of_image|>", "<|end_of_image|>",
42
+ "<|begin_of_video|>", "<|end_of_video|>"]
43
+
44
+ self.special_tokens = {
45
+ token: idx for idx, token in enumerate(self.special_tokens, start=len(mergeable_ranks))
46
+ }
47
+ self.special_token_ids = {idx: token for token, idx in self.special_tokens.items()}
48
+
49
+ self.tokenizer = tiktoken.Encoding(
50
+ name="my_tokenizer",
51
+ pat_str=pat_str,
52
+ mergeable_ranks=mergeable_ranks,
53
+ special_tokens=self.special_tokens
54
+ )
55
+ self.decoder = {rank: token for token, rank in mergeable_ranks.items()}
56
+ self.n_words = len(self.decoder) + len(self.special_tokens)
57
+
58
+ super().__init__(
59
+ padding_side=padding_side,
60
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
61
+ **kwargs
62
+ )
63
+
64
+ def get_command(self, token):
65
+ assert token in self.special_tokens
66
+ return self.special_tokens[token]
67
+
68
+ @property
69
+ def vocab_size(self):
70
+ return self.n_words
71
+
72
+ @property
73
+ def eos_token_id(self):
74
+ return self.get_command("<|endoftext|>")
75
+
76
+ def get_vocab(self):
77
+ """ Returns vocab as a dict """
78
+ vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)}
79
+ vocab.update(self.added_tokens_encoder)
80
+ return vocab
81
+
82
+ def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
83
+ """
84
+ Converts a sequence of tokens in a single string.
85
+ """
86
+ text = ""
87
+ temp = b""
88
+ for t in tokens:
89
+ if isinstance(t, str):
90
+ if temp:
91
+ text += temp.decode("utf-8", errors="replace")
92
+ temp = b""
93
+ text += t
94
+ elif isinstance(t, bytes):
95
+ temp += t
96
+ else:
97
+ raise TypeError("token should only be of type types or str")
98
+ if temp:
99
+ text += temp.decode("utf-8", errors="replace")
100
+ return text
101
+
102
+ def _tokenize(self, text, **kwargs):
103
+ tokens = []
104
+ if self.encode_special_tokens:
105
+ ids = self.tokenizer.encode(text, allowed_special="all")
106
+ else:
107
+ ids = self.tokenizer.encode(text, disallowed_special=())
108
+ for t in ids:
109
+ tokens.append(self.decoder[t])
110
+ return tokens
111
+
112
+ def _convert_token_to_id(self, token):
113
+ """ Converts a token (str) in an id using the vocab. """
114
+ if token in self.special_tokens:
115
+ return self.special_tokens[token]
116
+ return self.mergeable_ranks[token]
117
+
118
+ def _convert_id_to_token(self, index):
119
+ """Converts an index (integer) in a token (str) using the vocab."""
120
+ if index in self.special_token_ids:
121
+ return self.special_token_ids[index]
122
+ return self.decoder[index]
123
+
124
+ def save_vocabulary(self, save_directory, filename_prefix=None):
125
+ """
126
+ Save the vocabulary and special tokens file to a directory.
127
+
128
+ Args:
129
+ save_directory (`str`):
130
+ The directory in which to save the vocabulary.
131
+ filename_prefix (`str`, *optional*):
132
+ An optional prefix to add to the named of the saved files.
133
+
134
+ Returns:
135
+ `Tuple(str)`: Paths to the files saved.
136
+ """
137
+ if os.path.isdir(save_directory):
138
+ vocab_file = os.path.join(
139
+ save_directory, self.vocab_files_names["vocab_file"]
140
+ )
141
+ else:
142
+ vocab_file = save_directory
143
+
144
+ with open(self.vocab_file, 'rb') as fin:
145
+ proto_str = fin.read()
146
+
147
+ with open(vocab_file, "wb") as writer:
148
+ writer.write(proto_str)
149
+
150
+ return (vocab_file,)
151
+
152
+ def get_prefix_tokens(self):
153
+ prefix_tokens = [self.get_command("[gMASK]"), self.get_command("<sop>")]
154
+ return prefix_tokens
155
+
156
+ def build_single_message(self, role, metadata, message):
157
+ assert role in ["system", "user", "assistant", "observation"], role
158
+ role_tokens = [self.get_command(f"<|{role}|>")] + self.tokenizer.encode(f"{metadata}\n")
159
+ message_tokens = self.tokenizer.encode(message, disallowed_special=())
160
+ tokens = role_tokens + message_tokens
161
+ return tokens
162
+
163
+ def build_chat_input(self, query, history=None, role="user"):
164
+ if history is None:
165
+ history = []
166
+ input_ids = []
167
+ for item in history:
168
+ content = item["content"]
169
+ if item["role"] == "system" and "tools" in item:
170
+ for function in item["tools"]:
171
+ content += f"\n\n## {function['name']}\n\n{json.dumps(function, ensure_ascii=False, indent=4)}"
172
+ content += "\n在调用上述函数时,请使用 Json 格式表示调用的参数。"
173
+ input_ids.extend(self.build_single_message(item["role"], item.get("metadata", ""), content))
174
+ input_ids.extend(self.build_single_message(role, "", query))
175
+ input_ids.extend([self.get_command("<|assistant|>")])
176
+ return self.batch_encode_plus([input_ids], return_tensors="pt", is_split_into_words=True)
177
+
178
+ def build_inputs_with_special_tokens(
179
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
180
+ ) -> List[int]:
181
+ """
182
+ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
183
+ adding special tokens. A BERT sequence has the following format:
184
+
185
+ - single sequence: `[CLS] X [SEP]`
186
+ - pair of sequences: `[CLS] A [SEP] B [SEP]`
187
+
188
+ Args:
189
+ token_ids_0 (`List[int]`):
190
+ List of IDs to which the special tokens will be added.
191
+ token_ids_1 (`List[int]`, *optional*):
192
+ Optional second list of IDs for sequence pairs.
193
+
194
+ Returns:
195
+ `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
196
+ """
197
+ prefix_tokens = self.get_prefix_tokens()
198
+ token_ids_0 = prefix_tokens + token_ids_0
199
+ if token_ids_1 is not None:
200
+ token_ids_0 = token_ids_0 + token_ids_1 + [self.get_command("<eos>")]
201
+ return token_ids_0
202
+
203
+ def _pad(
204
+ self,
205
+ encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
206
+ max_length: Optional[int] = None,
207
+ padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
208
+ pad_to_multiple_of: Optional[int] = None,
209
+ return_attention_mask: Optional[bool] = None,
210
+ padding_side: Optional[str] = None,
211
+ ) -> dict:
212
+ """
213
+ Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
214
+
215
+ Args:
216
+ encoded_inputs:
217
+ Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
218
+ max_length: maximum length of the returned list and optionally padding length (see below).
219
+ Will truncate by taking into account the special tokens.
220
+ padding_strategy: PaddingStrategy to use for padding.
221
+
222
+ - PaddingStrategy.LONGEST Pad to the longest sequence in the batch
223
+ - PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
224
+ - PaddingStrategy.DO_NOT_PAD: Do not pad
225
+ The tokenizer padding sides are defined in self.padding_side:
226
+
227
+ - 'left': pads on the left of the sequences
228
+ - 'right': pads on the right of the sequences
229
+ pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
230
+ This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
231
+ `>= 7.5` (Volta).
232
+ return_attention_mask:
233
+ (optional) Set to False to avoid returning attention mask (default: set to model specifics)
234
+ """
235
+ # Load from model defaults
236
+ assert self.padding_side == "left"
237
+
238
+ required_input = encoded_inputs[self.model_input_names[0]]
239
+ seq_length = len(required_input)
240
+
241
+ if padding_strategy == PaddingStrategy.LONGEST:
242
+ max_length = len(required_input)
243
+
244
+ if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
245
+ max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
246
+
247
+ needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
248
+
249
+ # Initialize attention mask if not present.
250
+ if "attention_mask" not in encoded_inputs:
251
+ encoded_inputs["attention_mask"] = [1] * seq_length
252
+
253
+ if "position_ids" not in encoded_inputs:
254
+ encoded_inputs["position_ids"] = list(range(seq_length))
255
+
256
+ if needs_to_be_padded:
257
+ difference = max_length - len(required_input)
258
+
259
+ if "attention_mask" in encoded_inputs:
260
+ encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"]
261
+ if "position_ids" in encoded_inputs:
262
+ encoded_inputs["position_ids"] = [0] * difference + encoded_inputs["position_ids"]
263
+ encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
264
+
265
+ return encoded_inputs
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a493598071550244b2ee7f26118f3edec2150b9dfa967929a99052ac83fe716
3
+ size 2623634
tokenizer_config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "151329": {
4
+ "content": "<|endoftext|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ }
11
+ },
12
+ "auto_map": {
13
+ "AutoTokenizer": [
14
+ "tokenization_chatglm.ChatGLM4Tokenizer",
15
+ null
16
+ ]
17
+ },
18
+ "chat_template": "{% for message in messages %}{% if loop.first %}[gMASK]<sop><|{{ message['role'] }}|>\n {{ message['content'] }}{% else %}<|{{ message['role'] }}|>\n {{ message['content'] }}{% endif %}{% endfor %}{% if add_generation_prompt %}<|assistant|>{% endif %}",
19
+ "clean_up_tokenization_spaces": false,
20
+ "do_lower_case": false,
21
+ "eos_token": "<|endoftext|>",
22
+ "model_max_length": 1000000000000000019884624838656,
23
+ "padding_side": "left",
24
+ "remove_space": false,
25
+ "tokenizer_class": "ChatGLM4Tokenizer"
26
+ }