--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.81 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.6676 - Accuracy: 0.81 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 12 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.2592 | 1.0 | 75 | 2.2017 | 0.35 | | 1.8413 | 2.0 | 150 | 1.8071 | 0.45 | | 1.5432 | 3.0 | 225 | 1.4808 | 0.65 | | 1.2137 | 4.0 | 300 | 1.2621 | 0.7 | | 1.1546 | 5.0 | 375 | 1.0581 | 0.77 | | 0.9996 | 6.0 | 450 | 0.9858 | 0.75 | | 0.7508 | 7.0 | 525 | 0.9087 | 0.78 | | 0.6669 | 8.0 | 600 | 0.7710 | 0.81 | | 0.6834 | 9.0 | 675 | 0.7663 | 0.8 | | 0.4495 | 10.0 | 750 | 0.7184 | 0.79 | | 0.3677 | 11.0 | 825 | 0.6589 | 0.81 | | 0.3092 | 12.0 | 900 | 0.7223 | 0.8 | | 0.1846 | 13.0 | 975 | 0.6665 | 0.82 | | 0.1797 | 14.0 | 1050 | 0.6500 | 0.8 | | 0.1695 | 15.0 | 1125 | 0.6549 | 0.81 | | 0.1104 | 16.0 | 1200 | 0.6636 | 0.81 | | 0.1192 | 17.0 | 1275 | 0.6722 | 0.81 | | 0.1226 | 18.0 | 1350 | 0.6540 | 0.82 | | 0.1218 | 19.0 | 1425 | 0.6646 | 0.79 | | 0.067 | 20.0 | 1500 | 0.6676 | 0.81 | ### Framework versions - Transformers 4.33.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3