Update example_inference.py
Browse files- example_inference.py +3 -1
example_inference.py
CHANGED
@@ -3,15 +3,17 @@ import torch, os
|
|
3 |
from PIL import Image
|
4 |
from briarmbg import BriaRMBG
|
5 |
from utilities import preprocess_image, postprocess_image
|
|
|
6 |
|
7 |
def example_inference():
|
8 |
|
9 |
-
model_path =
|
10 |
im_path = f"{os.path.dirname(os.path.abspath(__file__))}/example_input.jpg"
|
11 |
|
12 |
net = BriaRMBG()
|
13 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
14 |
net.load_state_dict(torch.load(model_path, map_location=device))
|
|
|
15 |
net.eval()
|
16 |
|
17 |
# prepare input
|
|
|
3 |
from PIL import Image
|
4 |
from briarmbg import BriaRMBG
|
5 |
from utilities import preprocess_image, postprocess_image
|
6 |
+
from huggingface_hub import hf_hub_download
|
7 |
|
8 |
def example_inference():
|
9 |
|
10 |
+
model_path = hf_hub_download("briaai/RMBG-1.4", 'model.pth')
|
11 |
im_path = f"{os.path.dirname(os.path.abspath(__file__))}/example_input.jpg"
|
12 |
|
13 |
net = BriaRMBG()
|
14 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
15 |
net.load_state_dict(torch.load(model_path, map_location=device))
|
16 |
+
net.to(device)
|
17 |
net.eval()
|
18 |
|
19 |
# prepare input
|