File size: 2,283 Bytes
1af07d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: t5-small-text-simplification_1e4_adafactor
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-small-text-simplification_1e4_adafactor
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4541
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 256
- eval_batch_size: 256
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 0.8842 | 1.0 | 582 | 0.4651 |
| 0.5737 | 2.0 | 1164 | 0.4611 |
| 0.5559 | 3.0 | 1746 | 0.4585 |
| 0.548 | 4.0 | 2328 | 0.4573 |
| 0.541 | 5.0 | 2910 | 0.4565 |
| 0.5349 | 6.0 | 3492 | 0.4564 |
| 0.5257 | 7.0 | 4074 | 0.4552 |
| 0.5223 | 8.0 | 4656 | 0.4558 |
| 0.5185 | 9.0 | 5238 | 0.4550 |
| 0.5145 | 10.0 | 5820 | 0.4544 |
| 0.5166 | 11.0 | 6402 | 0.4551 |
| 0.5104 | 12.0 | 6984 | 0.4546 |
| 0.5089 | 13.0 | 7566 | 0.4547 |
| 0.5054 | 14.0 | 8148 | 0.4544 |
| 0.5047 | 15.0 | 8730 | 0.4544 |
| 0.5043 | 16.0 | 9312 | 0.4537 |
| 0.5021 | 17.0 | 9894 | 0.4539 |
| 0.5034 | 18.0 | 10476 | 0.4539 |
| 0.5008 | 19.0 | 11058 | 0.4541 |
| 0.5003 | 20.0 | 11640 | 0.4541 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3
|