Training in progress, step 1, checkpoint
Browse files- checkpoint-1/README.md +79 -77
- checkpoint-1/optimizer.pt +1 -1
- checkpoint-1/pytorch_model.bin +1 -1
- checkpoint-1/rng_state.pth +1 -1
- checkpoint-1/trainer_state.json +98 -98
- checkpoint-1/training_args.bin +1 -1
checkpoint-1/README.md
CHANGED
@@ -168,34 +168,34 @@ model-index:
|
|
168 |
type: sts-test
|
169 |
metrics:
|
170 |
- type: pearson_cosine
|
171 |
-
value: 0.
|
172 |
name: Pearson Cosine
|
173 |
- type: spearman_cosine
|
174 |
-
value: 0.
|
175 |
name: Spearman Cosine
|
176 |
- type: pearson_manhattan
|
177 |
-
value: 0.
|
178 |
name: Pearson Manhattan
|
179 |
- type: spearman_manhattan
|
180 |
-
value: 0.
|
181 |
name: Spearman Manhattan
|
182 |
- type: pearson_euclidean
|
183 |
-
value: 0.
|
184 |
name: Pearson Euclidean
|
185 |
- type: spearman_euclidean
|
186 |
-
value: 0.
|
187 |
name: Spearman Euclidean
|
188 |
- type: pearson_dot
|
189 |
-
value: 0.
|
190 |
name: Pearson Dot
|
191 |
- type: spearman_dot
|
192 |
-
value: 0.
|
193 |
name: Spearman Dot
|
194 |
- type: pearson_max
|
195 |
-
value: 0.
|
196 |
name: Pearson Max
|
197 |
- type: spearman_max
|
198 |
-
value: 0.
|
199 |
name: Spearman Max
|
200 |
- task:
|
201 |
type: triplet
|
@@ -230,55 +230,55 @@ model-index:
|
|
230 |
value: 0.55078125
|
231 |
name: Cosine Accuracy
|
232 |
- type: cosine_accuracy_threshold
|
233 |
-
value: 0.
|
234 |
name: Cosine Accuracy Threshold
|
235 |
- type: cosine_f1
|
236 |
-
value: 0.
|
237 |
name: Cosine F1
|
238 |
- type: cosine_f1_threshold
|
239 |
-
value: 0.
|
240 |
name: Cosine F1 Threshold
|
241 |
- type: cosine_precision
|
242 |
-
value: 0.
|
243 |
name: Cosine Precision
|
244 |
- type: cosine_recall
|
245 |
value: 1.0
|
246 |
name: Cosine Recall
|
247 |
- type: cosine_ap
|
248 |
-
value: 0.
|
249 |
name: Cosine Ap
|
250 |
- type: dot_accuracy
|
251 |
value: 0.55078125
|
252 |
name: Dot Accuracy
|
253 |
- type: dot_accuracy_threshold
|
254 |
-
value:
|
255 |
name: Dot Accuracy Threshold
|
256 |
- type: dot_f1
|
257 |
-
value: 0.
|
258 |
name: Dot F1
|
259 |
- type: dot_f1_threshold
|
260 |
-
value:
|
261 |
name: Dot F1 Threshold
|
262 |
- type: dot_precision
|
263 |
-
value: 0.
|
264 |
name: Dot Precision
|
265 |
- type: dot_recall
|
266 |
value: 1.0
|
267 |
name: Dot Recall
|
268 |
- type: dot_ap
|
269 |
-
value: 0.
|
270 |
name: Dot Ap
|
271 |
- type: manhattan_accuracy
|
272 |
-
value: 0.
|
273 |
name: Manhattan Accuracy
|
274 |
- type: manhattan_accuracy_threshold
|
275 |
-
value:
|
276 |
name: Manhattan Accuracy Threshold
|
277 |
- type: manhattan_f1
|
278 |
value: 0.6542553191489362
|
279 |
name: Manhattan F1
|
280 |
- type: manhattan_f1_threshold
|
281 |
-
value:
|
282 |
name: Manhattan F1 Threshold
|
283 |
- type: manhattan_precision
|
284 |
value: 0.48616600790513836
|
@@ -287,40 +287,40 @@ model-index:
|
|
287 |
value: 1.0
|
288 |
name: Manhattan Recall
|
289 |
- type: manhattan_ap
|
290 |
-
value: 0.
|
291 |
name: Manhattan Ap
|
292 |
- type: euclidean_accuracy
|
293 |
-
value: 0.
|
294 |
name: Euclidean Accuracy
|
295 |
- type: euclidean_accuracy_threshold
|
296 |
-
value:
|
297 |
name: Euclidean Accuracy Threshold
|
298 |
- type: euclidean_f1
|
299 |
-
value: 0.
|
300 |
name: Euclidean F1
|
301 |
- type: euclidean_f1_threshold
|
302 |
-
value:
|
303 |
name: Euclidean F1 Threshold
|
304 |
- type: euclidean_precision
|
305 |
-
value: 0.
|
306 |
name: Euclidean Precision
|
307 |
- type: euclidean_recall
|
308 |
value: 1.0
|
309 |
name: Euclidean Recall
|
310 |
- type: euclidean_ap
|
311 |
-
value: 0.
|
312 |
name: Euclidean Ap
|
313 |
- type: max_accuracy
|
314 |
value: 0.55078125
|
315 |
name: Max Accuracy
|
316 |
- type: max_accuracy_threshold
|
317 |
-
value:
|
318 |
name: Max Accuracy Threshold
|
319 |
- type: max_f1
|
320 |
value: 0.6542553191489362
|
321 |
name: Max F1
|
322 |
- type: max_f1_threshold
|
323 |
-
value:
|
324 |
name: Max F1 Threshold
|
325 |
- type: max_precision
|
326 |
value: 0.48616600790513836
|
@@ -329,7 +329,7 @@ model-index:
|
|
329 |
value: 1.0
|
330 |
name: Max Recall
|
331 |
- type: max_ap
|
332 |
-
value: 0.
|
333 |
name: Max Ap
|
334 |
---
|
335 |
|
@@ -392,7 +392,7 @@ Then you can load this model and run inference.
|
|
392 |
from sentence_transformers import SentenceTransformer
|
393 |
|
394 |
# Download from the 🤗 Hub
|
395 |
-
model = SentenceTransformer("bobox/DeBERTa-small-ST-v1-toytest
|
396 |
# Run inference
|
397 |
sentences = [
|
398 |
'when is season 2 of the ranch coming to netflix',
|
@@ -443,16 +443,16 @@ You can finetune this model on your own dataset.
|
|
443 |
|
444 |
| Metric | Value |
|
445 |
|:--------------------|:-----------|
|
446 |
-
| pearson_cosine | 0.
|
447 |
-
| **spearman_cosine** | **0.
|
448 |
-
| pearson_manhattan | 0.
|
449 |
-
| spearman_manhattan | 0.
|
450 |
-
| pearson_euclidean | 0.
|
451 |
-
| spearman_euclidean | 0.
|
452 |
-
| pearson_dot | 0.
|
453 |
-
| spearman_dot | 0.
|
454 |
-
| pearson_max | 0.
|
455 |
-
| spearman_max | 0.
|
456 |
|
457 |
#### Triplet
|
458 |
* Dataset: `NLI-v2`
|
@@ -473,40 +473,40 @@ You can finetune this model on your own dataset.
|
|
473 |
| Metric | Value |
|
474 |
|:-----------------------------|:-----------|
|
475 |
| cosine_accuracy | 0.5508 |
|
476 |
-
| cosine_accuracy_threshold | 0.
|
477 |
-
| cosine_f1 | 0.
|
478 |
-
| cosine_f1_threshold | 0.
|
479 |
-
| cosine_precision | 0.
|
480 |
| cosine_recall | 1.0 |
|
481 |
-
| cosine_ap | 0.
|
482 |
| dot_accuracy | 0.5508 |
|
483 |
-
| dot_accuracy_threshold |
|
484 |
-
| dot_f1 | 0.
|
485 |
-
| dot_f1_threshold |
|
486 |
-
| dot_precision | 0.
|
487 |
| dot_recall | 1.0 |
|
488 |
-
| dot_ap | 0.
|
489 |
-
| manhattan_accuracy | 0.
|
490 |
-
| manhattan_accuracy_threshold |
|
491 |
| manhattan_f1 | 0.6543 |
|
492 |
-
| manhattan_f1_threshold |
|
493 |
| manhattan_precision | 0.4862 |
|
494 |
| manhattan_recall | 1.0 |
|
495 |
-
| manhattan_ap | 0.
|
496 |
-
| euclidean_accuracy | 0.
|
497 |
-
| euclidean_accuracy_threshold |
|
498 |
-
| euclidean_f1 | 0.
|
499 |
-
| euclidean_f1_threshold |
|
500 |
-
| euclidean_precision | 0.
|
501 |
| euclidean_recall | 1.0 |
|
502 |
-
| euclidean_ap | 0.
|
503 |
| max_accuracy | 0.5508 |
|
504 |
-
| max_accuracy_threshold |
|
505 |
| max_f1 | 0.6543 |
|
506 |
-
| max_f1_threshold |
|
507 |
| max_precision | 0.4862 |
|
508 |
| max_recall | 1.0 |
|
509 |
-
| **max_ap** | **0.
|
510 |
|
511 |
<!--
|
512 |
## Bias, Risks and Limitations
|
@@ -1155,15 +1155,15 @@ You can finetune this model on your own dataset.
|
|
1155 |
#### Non-Default Hyperparameters
|
1156 |
|
1157 |
- `eval_strategy`: steps
|
1158 |
-
- `per_device_train_batch_size`:
|
1159 |
- `per_device_eval_batch_size`: 64
|
1160 |
-
- `gradient_accumulation_steps`:
|
1161 |
- `learning_rate`: 4e-05
|
1162 |
-
- `weight_decay`:
|
1163 |
- `num_train_epochs`: 0.1
|
1164 |
- `lr_scheduler_type`: cosine_with_min_lr
|
1165 |
-
- `lr_scheduler_kwargs`: {'num_cycles': 0.5, 'min_lr':
|
1166 |
-
- `warmup_ratio`: 0.
|
1167 |
- `save_safetensors`: False
|
1168 |
- `fp16`: True
|
1169 |
- `push_to_hub`: True
|
@@ -1178,14 +1178,14 @@ You can finetune this model on your own dataset.
|
|
1178 |
- `do_predict`: False
|
1179 |
- `eval_strategy`: steps
|
1180 |
- `prediction_loss_only`: True
|
1181 |
-
- `per_device_train_batch_size`:
|
1182 |
- `per_device_eval_batch_size`: 64
|
1183 |
- `per_gpu_train_batch_size`: None
|
1184 |
- `per_gpu_eval_batch_size`: None
|
1185 |
-
- `gradient_accumulation_steps`:
|
1186 |
- `eval_accumulation_steps`: None
|
1187 |
- `learning_rate`: 4e-05
|
1188 |
-
- `weight_decay`:
|
1189 |
- `adam_beta1`: 0.9
|
1190 |
- `adam_beta2`: 0.999
|
1191 |
- `adam_epsilon`: 1e-08
|
@@ -1193,8 +1193,8 @@ You can finetune this model on your own dataset.
|
|
1193 |
- `num_train_epochs`: 0.1
|
1194 |
- `max_steps`: -1
|
1195 |
- `lr_scheduler_type`: cosine_with_min_lr
|
1196 |
-
- `lr_scheduler_kwargs`: {'num_cycles': 0.5, 'min_lr':
|
1197 |
-
- `warmup_ratio`: 0.
|
1198 |
- `warmup_steps`: 0
|
1199 |
- `log_level`: passive
|
1200 |
- `log_level_replica`: warning
|
@@ -1290,6 +1290,8 @@ You can finetune this model on your own dataset.
|
|
1290 |
| Epoch | Step | Training Loss | negation-triplets loss | vitaminc-pairs loss | qasc pairs loss | scitail-pairs-pos loss | gooaq pairs loss | xsum-pairs loss | paws-pos loss | nq pairs loss | msmarco pairs loss | openbookqa pairs loss | trivia pairs loss | sciq pairs loss | NLI-v2_max_accuracy | VitaminC_max_ap | sts-test_spearman_cosine |
|
1291 |
|:------:|:----:|:-------------:|:----------------------:|:-------------------:|:---------------:|:----------------------:|:----------------:|:---------------:|:-------------:|:-------------:|:------------------:|:---------------------:|:-----------------:|:---------------:|:-------------------:|:---------------:|:------------------------:|
|
1292 |
| 0.0548 | 1 | 6.851 | 5.2593 | 2.7279 | 7.9013 | 1.9180 | 8.1263 | 6.3900 | 2.2178 | 10.4461 | 10.6071 | 4.7477 | 7.8702 | 1.1206 | 1.0 | 0.5179 | 0.0705 |
|
|
|
|
|
1293 |
|
1294 |
|
1295 |
### Framework Versions
|
|
|
168 |
type: sts-test
|
169 |
metrics:
|
170 |
- type: pearson_cosine
|
171 |
+
value: 0.033928485348000664
|
172 |
name: Pearson Cosine
|
173 |
- type: spearman_cosine
|
174 |
+
value: 0.08944249572062771
|
175 |
name: Spearman Cosine
|
176 |
- type: pearson_manhattan
|
177 |
+
value: 0.06296467882181725
|
178 |
name: Pearson Manhattan
|
179 |
- type: spearman_manhattan
|
180 |
+
value: 0.08266825793291849
|
181 |
name: Spearman Manhattan
|
182 |
- type: pearson_euclidean
|
183 |
+
value: 0.03489200141716902
|
184 |
name: Pearson Euclidean
|
185 |
- type: spearman_euclidean
|
186 |
+
value: 0.06202473500014035
|
187 |
name: Spearman Euclidean
|
188 |
- type: pearson_dot
|
189 |
+
value: 0.2554086617921545
|
190 |
name: Pearson Dot
|
191 |
- type: spearman_dot
|
192 |
+
value: 0.27863958137561534
|
193 |
name: Spearman Dot
|
194 |
- type: pearson_max
|
195 |
+
value: 0.2554086617921545
|
196 |
name: Pearson Max
|
197 |
- type: spearman_max
|
198 |
+
value: 0.27863958137561534
|
199 |
name: Spearman Max
|
200 |
- task:
|
201 |
type: triplet
|
|
|
230 |
value: 0.55078125
|
231 |
name: Cosine Accuracy
|
232 |
- type: cosine_accuracy_threshold
|
233 |
+
value: 0.9503422379493713
|
234 |
name: Cosine Accuracy Threshold
|
235 |
- type: cosine_f1
|
236 |
+
value: 0.6542553191489362
|
237 |
name: Cosine F1
|
238 |
- type: cosine_f1_threshold
|
239 |
+
value: 0.656802773475647
|
240 |
name: Cosine F1 Threshold
|
241 |
- type: cosine_precision
|
242 |
+
value: 0.48616600790513836
|
243 |
name: Cosine Precision
|
244 |
- type: cosine_recall
|
245 |
value: 1.0
|
246 |
name: Cosine Recall
|
247 |
- type: cosine_ap
|
248 |
+
value: 0.5203148129920425
|
249 |
name: Cosine Ap
|
250 |
- type: dot_accuracy
|
251 |
value: 0.55078125
|
252 |
name: Dot Accuracy
|
253 |
- type: dot_accuracy_threshold
|
254 |
+
value: 425.30816650390625
|
255 |
name: Dot Accuracy Threshold
|
256 |
- type: dot_f1
|
257 |
+
value: 0.6542553191489362
|
258 |
name: Dot F1
|
259 |
- type: dot_f1_threshold
|
260 |
+
value: 262.8174743652344
|
261 |
name: Dot F1 Threshold
|
262 |
- type: dot_precision
|
263 |
+
value: 0.48616600790513836
|
264 |
name: Dot Precision
|
265 |
- type: dot_recall
|
266 |
value: 1.0
|
267 |
name: Dot Recall
|
268 |
- type: dot_ap
|
269 |
+
value: 0.5120444819966403
|
270 |
name: Dot Ap
|
271 |
- type: manhattan_accuracy
|
272 |
+
value: 0.5390625
|
273 |
name: Manhattan Accuracy
|
274 |
- type: manhattan_accuracy_threshold
|
275 |
+
value: 107.76934814453125
|
276 |
name: Manhattan Accuracy Threshold
|
277 |
- type: manhattan_f1
|
278 |
value: 0.6542553191489362
|
279 |
name: Manhattan F1
|
280 |
- type: manhattan_f1_threshold
|
281 |
+
value: 271.5865478515625
|
282 |
name: Manhattan F1 Threshold
|
283 |
- type: manhattan_precision
|
284 |
value: 0.48616600790513836
|
|
|
287 |
value: 1.0
|
288 |
name: Manhattan Recall
|
289 |
- type: manhattan_ap
|
290 |
+
value: 0.5208015383309144
|
291 |
name: Manhattan Ap
|
292 |
- type: euclidean_accuracy
|
293 |
+
value: 0.55078125
|
294 |
name: Euclidean Accuracy
|
295 |
- type: euclidean_accuracy_threshold
|
296 |
+
value: 7.050784111022949
|
297 |
name: Euclidean Accuracy Threshold
|
298 |
- type: euclidean_f1
|
299 |
+
value: 0.6507936507936508
|
300 |
name: Euclidean F1
|
301 |
- type: euclidean_f1_threshold
|
302 |
+
value: 17.465972900390625
|
303 |
name: Euclidean F1 Threshold
|
304 |
- type: euclidean_precision
|
305 |
+
value: 0.4823529411764706
|
306 |
name: Euclidean Precision
|
307 |
- type: euclidean_recall
|
308 |
value: 1.0
|
309 |
name: Euclidean Recall
|
310 |
- type: euclidean_ap
|
311 |
+
value: 0.5175301700973289
|
312 |
name: Euclidean Ap
|
313 |
- type: max_accuracy
|
314 |
value: 0.55078125
|
315 |
name: Max Accuracy
|
316 |
- type: max_accuracy_threshold
|
317 |
+
value: 425.30816650390625
|
318 |
name: Max Accuracy Threshold
|
319 |
- type: max_f1
|
320 |
value: 0.6542553191489362
|
321 |
name: Max F1
|
322 |
- type: max_f1_threshold
|
323 |
+
value: 271.5865478515625
|
324 |
name: Max F1 Threshold
|
325 |
- type: max_precision
|
326 |
value: 0.48616600790513836
|
|
|
329 |
value: 1.0
|
330 |
name: Max Recall
|
331 |
- type: max_ap
|
332 |
+
value: 0.5208015383309144
|
333 |
name: Max Ap
|
334 |
---
|
335 |
|
|
|
392 |
from sentence_transformers import SentenceTransformer
|
393 |
|
394 |
# Download from the 🤗 Hub
|
395 |
+
model = SentenceTransformer("bobox/DeBERTa-small-ST-v1-toytest")
|
396 |
# Run inference
|
397 |
sentences = [
|
398 |
'when is season 2 of the ranch coming to netflix',
|
|
|
443 |
|
444 |
| Metric | Value |
|
445 |
|:--------------------|:-----------|
|
446 |
+
| pearson_cosine | 0.0339 |
|
447 |
+
| **spearman_cosine** | **0.0894** |
|
448 |
+
| pearson_manhattan | 0.063 |
|
449 |
+
| spearman_manhattan | 0.0827 |
|
450 |
+
| pearson_euclidean | 0.0349 |
|
451 |
+
| spearman_euclidean | 0.062 |
|
452 |
+
| pearson_dot | 0.2554 |
|
453 |
+
| spearman_dot | 0.2786 |
|
454 |
+
| pearson_max | 0.2554 |
|
455 |
+
| spearman_max | 0.2786 |
|
456 |
|
457 |
#### Triplet
|
458 |
* Dataset: `NLI-v2`
|
|
|
473 |
| Metric | Value |
|
474 |
|:-----------------------------|:-----------|
|
475 |
| cosine_accuracy | 0.5508 |
|
476 |
+
| cosine_accuracy_threshold | 0.9503 |
|
477 |
+
| cosine_f1 | 0.6543 |
|
478 |
+
| cosine_f1_threshold | 0.6568 |
|
479 |
+
| cosine_precision | 0.4862 |
|
480 |
| cosine_recall | 1.0 |
|
481 |
+
| cosine_ap | 0.5203 |
|
482 |
| dot_accuracy | 0.5508 |
|
483 |
+
| dot_accuracy_threshold | 425.3082 |
|
484 |
+
| dot_f1 | 0.6543 |
|
485 |
+
| dot_f1_threshold | 262.8175 |
|
486 |
+
| dot_precision | 0.4862 |
|
487 |
| dot_recall | 1.0 |
|
488 |
+
| dot_ap | 0.512 |
|
489 |
+
| manhattan_accuracy | 0.5391 |
|
490 |
+
| manhattan_accuracy_threshold | 107.7693 |
|
491 |
| manhattan_f1 | 0.6543 |
|
492 |
+
| manhattan_f1_threshold | 271.5865 |
|
493 |
| manhattan_precision | 0.4862 |
|
494 |
| manhattan_recall | 1.0 |
|
495 |
+
| manhattan_ap | 0.5208 |
|
496 |
+
| euclidean_accuracy | 0.5508 |
|
497 |
+
| euclidean_accuracy_threshold | 7.0508 |
|
498 |
+
| euclidean_f1 | 0.6508 |
|
499 |
+
| euclidean_f1_threshold | 17.466 |
|
500 |
+
| euclidean_precision | 0.4824 |
|
501 |
| euclidean_recall | 1.0 |
|
502 |
+
| euclidean_ap | 0.5175 |
|
503 |
| max_accuracy | 0.5508 |
|
504 |
+
| max_accuracy_threshold | 425.3082 |
|
505 |
| max_f1 | 0.6543 |
|
506 |
+
| max_f1_threshold | 271.5865 |
|
507 |
| max_precision | 0.4862 |
|
508 |
| max_recall | 1.0 |
|
509 |
+
| **max_ap** | **0.5208** |
|
510 |
|
511 |
<!--
|
512 |
## Bias, Risks and Limitations
|
|
|
1155 |
#### Non-Default Hyperparameters
|
1156 |
|
1157 |
- `eval_strategy`: steps
|
1158 |
+
- `per_device_train_batch_size`: 320
|
1159 |
- `per_device_eval_batch_size`: 64
|
1160 |
+
- `gradient_accumulation_steps`: 4
|
1161 |
- `learning_rate`: 4e-05
|
1162 |
+
- `weight_decay`: 5e-05
|
1163 |
- `num_train_epochs`: 0.1
|
1164 |
- `lr_scheduler_type`: cosine_with_min_lr
|
1165 |
+
- `lr_scheduler_kwargs`: {'num_cycles': 0.5, 'min_lr': 1e-05}
|
1166 |
+
- `warmup_ratio`: 0.15
|
1167 |
- `save_safetensors`: False
|
1168 |
- `fp16`: True
|
1169 |
- `push_to_hub`: True
|
|
|
1178 |
- `do_predict`: False
|
1179 |
- `eval_strategy`: steps
|
1180 |
- `prediction_loss_only`: True
|
1181 |
+
- `per_device_train_batch_size`: 320
|
1182 |
- `per_device_eval_batch_size`: 64
|
1183 |
- `per_gpu_train_batch_size`: None
|
1184 |
- `per_gpu_eval_batch_size`: None
|
1185 |
+
- `gradient_accumulation_steps`: 4
|
1186 |
- `eval_accumulation_steps`: None
|
1187 |
- `learning_rate`: 4e-05
|
1188 |
+
- `weight_decay`: 5e-05
|
1189 |
- `adam_beta1`: 0.9
|
1190 |
- `adam_beta2`: 0.999
|
1191 |
- `adam_epsilon`: 1e-08
|
|
|
1193 |
- `num_train_epochs`: 0.1
|
1194 |
- `max_steps`: -1
|
1195 |
- `lr_scheduler_type`: cosine_with_min_lr
|
1196 |
+
- `lr_scheduler_kwargs`: {'num_cycles': 0.5, 'min_lr': 1e-05}
|
1197 |
+
- `warmup_ratio`: 0.15
|
1198 |
- `warmup_steps`: 0
|
1199 |
- `log_level`: passive
|
1200 |
- `log_level_replica`: warning
|
|
|
1290 |
| Epoch | Step | Training Loss | negation-triplets loss | vitaminc-pairs loss | qasc pairs loss | scitail-pairs-pos loss | gooaq pairs loss | xsum-pairs loss | paws-pos loss | nq pairs loss | msmarco pairs loss | openbookqa pairs loss | trivia pairs loss | sciq pairs loss | NLI-v2_max_accuracy | VitaminC_max_ap | sts-test_spearman_cosine |
|
1291 |
|:------:|:----:|:-------------:|:----------------------:|:-------------------:|:---------------:|:----------------------:|:----------------:|:---------------:|:-------------:|:-------------:|:------------------:|:---------------------:|:-----------------:|:---------------:|:-------------------:|:---------------:|:------------------------:|
|
1292 |
| 0.0548 | 1 | 6.851 | 5.2593 | 2.7279 | 7.9013 | 1.9180 | 8.1263 | 6.3900 | 2.2178 | 10.4461 | 10.6071 | 4.7477 | 7.8702 | 1.1206 | 1.0 | 0.5179 | 0.0705 |
|
1293 |
+
| 0.1096 | 2 | 7.0772 | 5.2441 | 2.6973 | 6.5699 | 1.9754 | 6.6944 | 6.1687 | 2.3460 | 8.0334 | 7.9983 | 4.5152 | 6.7688 | 0.9838 | 1.0 | 0.5208 | 0.0894 |
|
1294 |
+
| 0.0519 | 1 | 7.4907 | 5.2441 | 2.6973 | 6.5699 | 1.9754 | 6.6944 | 6.1687 | 2.3460 | 8.0334 | 7.9983 | 4.5152 | 6.7688 | 0.9838 | 1.0 | 0.5208 | 0.0894 |
|
1295 |
|
1296 |
|
1297 |
### Framework Versions
|
checkpoint-1/optimizer.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1130520122
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2559a3b3dfddec8028d1fe2bf75a77ee9151c2eab3dedeb6242d0d710fc8a441
|
3 |
size 1130520122
|
checkpoint-1/pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 565251810
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:deabaff50d850f82996bcefd758e8747428f8bf3eb8ff3287402bd7ebb10f5f8
|
3 |
size 565251810
|
checkpoint-1/rng_state.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 14244
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d0c73f90426d27a0931c2aab6eaba0594fa6ddaafc6b254dfc4cf59a3d75971a
|
3 |
size 14244
|
checkpoint-1/trainer_state.json
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
{
|
2 |
"best_metric": null,
|
3 |
"best_model_checkpoint": null,
|
4 |
-
"epoch": 0.
|
5 |
"eval_steps": 1,
|
6 |
"global_step": 1,
|
7 |
"is_hyper_param_search": false,
|
@@ -9,157 +9,157 @@
|
|
9 |
"is_world_process_zero": true,
|
10 |
"log_history": [
|
11 |
{
|
12 |
-
"epoch": 0.
|
13 |
-
"grad_norm":
|
14 |
"learning_rate": 4e-05,
|
15 |
-
"loss":
|
16 |
"step": 1
|
17 |
},
|
18 |
{
|
19 |
-
"epoch": 0.
|
20 |
"eval_NLI-v2_cosine_accuracy": 1.0,
|
21 |
"eval_NLI-v2_dot_accuracy": 0.125,
|
22 |
"eval_NLI-v2_euclidean_accuracy": 1.0,
|
23 |
"eval_NLI-v2_manhattan_accuracy": 1.0,
|
24 |
"eval_NLI-v2_max_accuracy": 1.0,
|
25 |
"eval_VitaminC_cosine_accuracy": 0.55078125,
|
26 |
-
"eval_VitaminC_cosine_accuracy_threshold": 0.
|
27 |
-
"eval_VitaminC_cosine_ap": 0.
|
28 |
-
"eval_VitaminC_cosine_f1": 0.
|
29 |
-
"eval_VitaminC_cosine_f1_threshold": 0.
|
30 |
-
"eval_VitaminC_cosine_precision": 0.
|
31 |
"eval_VitaminC_cosine_recall": 1.0,
|
32 |
"eval_VitaminC_dot_accuracy": 0.55078125,
|
33 |
-
"eval_VitaminC_dot_accuracy_threshold":
|
34 |
-
"eval_VitaminC_dot_ap": 0.
|
35 |
-
"eval_VitaminC_dot_f1": 0.
|
36 |
-
"eval_VitaminC_dot_f1_threshold":
|
37 |
-
"eval_VitaminC_dot_precision": 0.
|
38 |
"eval_VitaminC_dot_recall": 1.0,
|
39 |
-
"eval_VitaminC_euclidean_accuracy": 0.
|
40 |
-
"eval_VitaminC_euclidean_accuracy_threshold":
|
41 |
-
"eval_VitaminC_euclidean_ap": 0.
|
42 |
-
"eval_VitaminC_euclidean_f1": 0.
|
43 |
-
"eval_VitaminC_euclidean_f1_threshold":
|
44 |
-
"eval_VitaminC_euclidean_precision": 0.
|
45 |
"eval_VitaminC_euclidean_recall": 1.0,
|
46 |
-
"eval_VitaminC_manhattan_accuracy": 0.
|
47 |
-
"eval_VitaminC_manhattan_accuracy_threshold":
|
48 |
-
"eval_VitaminC_manhattan_ap": 0.
|
49 |
"eval_VitaminC_manhattan_f1": 0.6542553191489362,
|
50 |
-
"eval_VitaminC_manhattan_f1_threshold":
|
51 |
"eval_VitaminC_manhattan_precision": 0.48616600790513836,
|
52 |
"eval_VitaminC_manhattan_recall": 1.0,
|
53 |
"eval_VitaminC_max_accuracy": 0.55078125,
|
54 |
-
"eval_VitaminC_max_accuracy_threshold":
|
55 |
-
"eval_VitaminC_max_ap": 0.
|
56 |
"eval_VitaminC_max_f1": 0.6542553191489362,
|
57 |
-
"eval_VitaminC_max_f1_threshold":
|
58 |
"eval_VitaminC_max_precision": 0.48616600790513836,
|
59 |
"eval_VitaminC_max_recall": 1.0,
|
60 |
-
"eval_sequential_score": 0.
|
61 |
-
"eval_sts-test_pearson_cosine": 0.
|
62 |
-
"eval_sts-test_pearson_dot": 0.
|
63 |
-
"eval_sts-test_pearson_euclidean": 0.
|
64 |
-
"eval_sts-test_pearson_manhattan": 0.
|
65 |
-
"eval_sts-test_pearson_max": 0.
|
66 |
-
"eval_sts-test_spearman_cosine": 0.
|
67 |
-
"eval_sts-test_spearman_dot": 0.
|
68 |
-
"eval_sts-test_spearman_euclidean": 0.
|
69 |
-
"eval_sts-test_spearman_manhattan": 0.
|
70 |
-
"eval_sts-test_spearman_max": 0.
|
71 |
-
"eval_vitaminc-pairs_loss": 2.
|
72 |
-
"eval_vitaminc-pairs_runtime": 1.
|
73 |
-
"eval_vitaminc-pairs_samples_per_second":
|
74 |
-
"eval_vitaminc-pairs_steps_per_second": 1.
|
75 |
"step": 1
|
76 |
},
|
77 |
{
|
78 |
-
"epoch": 0.
|
79 |
-
"eval_negation-triplets_loss": 5.
|
80 |
-
"eval_negation-triplets_runtime": 0.
|
81 |
-
"eval_negation-triplets_samples_per_second":
|
82 |
-
"eval_negation-triplets_steps_per_second": 3.
|
83 |
"step": 1
|
84 |
},
|
85 |
{
|
86 |
-
"epoch": 0.
|
87 |
-
"eval_scitail-pairs-pos_loss": 1.
|
88 |
-
"eval_scitail-pairs-pos_runtime": 0.
|
89 |
-
"eval_scitail-pairs-pos_samples_per_second":
|
90 |
-
"eval_scitail-pairs-pos_steps_per_second": 2.
|
91 |
"step": 1
|
92 |
},
|
93 |
{
|
94 |
-
"epoch": 0.
|
95 |
-
"eval_xsum-pairs_loss": 6.
|
96 |
-
"eval_xsum-pairs_runtime": 3.
|
97 |
-
"eval_xsum-pairs_samples_per_second": 38.
|
98 |
-
"eval_xsum-pairs_steps_per_second": 0.
|
99 |
"step": 1
|
100 |
},
|
101 |
{
|
102 |
-
"epoch": 0.
|
103 |
-
"eval_sciq_pairs_loss":
|
104 |
-
"eval_sciq_pairs_runtime": 3.
|
105 |
-
"eval_sciq_pairs_samples_per_second": 38.
|
106 |
-
"eval_sciq_pairs_steps_per_second": 0.
|
107 |
"step": 1
|
108 |
},
|
109 |
{
|
110 |
-
"epoch": 0.
|
111 |
-
"eval_qasc_pairs_loss":
|
112 |
-
"eval_qasc_pairs_runtime": 0.
|
113 |
-
"eval_qasc_pairs_samples_per_second": 189.
|
114 |
"eval_qasc_pairs_steps_per_second": 2.964,
|
115 |
"step": 1
|
116 |
},
|
117 |
{
|
118 |
-
"epoch": 0.
|
119 |
-
"eval_openbookqa_pairs_loss": 4.
|
120 |
-
"eval_openbookqa_pairs_runtime": 0.
|
121 |
-
"eval_openbookqa_pairs_samples_per_second":
|
122 |
-
"eval_openbookqa_pairs_steps_per_second": 3.
|
123 |
"step": 1
|
124 |
},
|
125 |
{
|
126 |
-
"epoch": 0.
|
127 |
-
"eval_msmarco_pairs_loss":
|
128 |
-
"eval_msmarco_pairs_runtime": 1.
|
129 |
-
"eval_msmarco_pairs_samples_per_second": 106.
|
130 |
-
"eval_msmarco_pairs_steps_per_second": 1.
|
131 |
"step": 1
|
132 |
},
|
133 |
{
|
134 |
-
"epoch": 0.
|
135 |
-
"eval_nq_pairs_loss":
|
136 |
-
"eval_nq_pairs_runtime": 2.
|
137 |
-
"eval_nq_pairs_samples_per_second":
|
138 |
-
"eval_nq_pairs_steps_per_second": 0.
|
139 |
"step": 1
|
140 |
},
|
141 |
{
|
142 |
-
"epoch": 0.
|
143 |
-
"eval_trivia_pairs_loss":
|
144 |
-
"eval_trivia_pairs_runtime":
|
145 |
-
"eval_trivia_pairs_samples_per_second": 29.
|
146 |
-
"eval_trivia_pairs_steps_per_second": 0.
|
147 |
"step": 1
|
148 |
},
|
149 |
{
|
150 |
-
"epoch": 0.
|
151 |
-
"eval_gooaq_pairs_loss":
|
152 |
-
"eval_gooaq_pairs_runtime": 0.
|
153 |
-
"eval_gooaq_pairs_samples_per_second":
|
154 |
-
"eval_gooaq_pairs_steps_per_second": 2.
|
155 |
"step": 1
|
156 |
},
|
157 |
{
|
158 |
-
"epoch": 0.
|
159 |
-
"eval_paws-pos_loss": 2.
|
160 |
-
"eval_paws-pos_runtime": 0.
|
161 |
-
"eval_paws-pos_samples_per_second":
|
162 |
-
"eval_paws-pos_steps_per_second": 2.
|
163 |
"step": 1
|
164 |
}
|
165 |
],
|
@@ -181,7 +181,7 @@
|
|
181 |
}
|
182 |
},
|
183 |
"total_flos": 0.0,
|
184 |
-
"train_batch_size":
|
185 |
"trial_name": null,
|
186 |
"trial_params": null
|
187 |
}
|
|
|
1 |
{
|
2 |
"best_metric": null,
|
3 |
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.05194805194805195,
|
5 |
"eval_steps": 1,
|
6 |
"global_step": 1,
|
7 |
"is_hyper_param_search": false,
|
|
|
9 |
"is_world_process_zero": true,
|
10 |
"log_history": [
|
11 |
{
|
12 |
+
"epoch": 0.05194805194805195,
|
13 |
+
"grad_norm": 15.329390525817871,
|
14 |
"learning_rate": 4e-05,
|
15 |
+
"loss": 7.4907,
|
16 |
"step": 1
|
17 |
},
|
18 |
{
|
19 |
+
"epoch": 0.05194805194805195,
|
20 |
"eval_NLI-v2_cosine_accuracy": 1.0,
|
21 |
"eval_NLI-v2_dot_accuracy": 0.125,
|
22 |
"eval_NLI-v2_euclidean_accuracy": 1.0,
|
23 |
"eval_NLI-v2_manhattan_accuracy": 1.0,
|
24 |
"eval_NLI-v2_max_accuracy": 1.0,
|
25 |
"eval_VitaminC_cosine_accuracy": 0.55078125,
|
26 |
+
"eval_VitaminC_cosine_accuracy_threshold": 0.9503422379493713,
|
27 |
+
"eval_VitaminC_cosine_ap": 0.5203148129920425,
|
28 |
+
"eval_VitaminC_cosine_f1": 0.6542553191489362,
|
29 |
+
"eval_VitaminC_cosine_f1_threshold": 0.656802773475647,
|
30 |
+
"eval_VitaminC_cosine_precision": 0.48616600790513836,
|
31 |
"eval_VitaminC_cosine_recall": 1.0,
|
32 |
"eval_VitaminC_dot_accuracy": 0.55078125,
|
33 |
+
"eval_VitaminC_dot_accuracy_threshold": 425.30816650390625,
|
34 |
+
"eval_VitaminC_dot_ap": 0.5120444819966403,
|
35 |
+
"eval_VitaminC_dot_f1": 0.6542553191489362,
|
36 |
+
"eval_VitaminC_dot_f1_threshold": 262.8174743652344,
|
37 |
+
"eval_VitaminC_dot_precision": 0.48616600790513836,
|
38 |
"eval_VitaminC_dot_recall": 1.0,
|
39 |
+
"eval_VitaminC_euclidean_accuracy": 0.55078125,
|
40 |
+
"eval_VitaminC_euclidean_accuracy_threshold": 7.050784111022949,
|
41 |
+
"eval_VitaminC_euclidean_ap": 0.5175301700973289,
|
42 |
+
"eval_VitaminC_euclidean_f1": 0.6507936507936508,
|
43 |
+
"eval_VitaminC_euclidean_f1_threshold": 17.465972900390625,
|
44 |
+
"eval_VitaminC_euclidean_precision": 0.4823529411764706,
|
45 |
"eval_VitaminC_euclidean_recall": 1.0,
|
46 |
+
"eval_VitaminC_manhattan_accuracy": 0.5390625,
|
47 |
+
"eval_VitaminC_manhattan_accuracy_threshold": 107.76934814453125,
|
48 |
+
"eval_VitaminC_manhattan_ap": 0.5208015383309144,
|
49 |
"eval_VitaminC_manhattan_f1": 0.6542553191489362,
|
50 |
+
"eval_VitaminC_manhattan_f1_threshold": 271.5865478515625,
|
51 |
"eval_VitaminC_manhattan_precision": 0.48616600790513836,
|
52 |
"eval_VitaminC_manhattan_recall": 1.0,
|
53 |
"eval_VitaminC_max_accuracy": 0.55078125,
|
54 |
+
"eval_VitaminC_max_accuracy_threshold": 425.30816650390625,
|
55 |
+
"eval_VitaminC_max_ap": 0.5208015383309144,
|
56 |
"eval_VitaminC_max_f1": 0.6542553191489362,
|
57 |
+
"eval_VitaminC_max_f1_threshold": 271.5865478515625,
|
58 |
"eval_VitaminC_max_precision": 0.48616600790513836,
|
59 |
"eval_VitaminC_max_recall": 1.0,
|
60 |
+
"eval_sequential_score": 0.5208015383309144,
|
61 |
+
"eval_sts-test_pearson_cosine": 0.033928485348000664,
|
62 |
+
"eval_sts-test_pearson_dot": 0.2554086617921545,
|
63 |
+
"eval_sts-test_pearson_euclidean": 0.03489200141716902,
|
64 |
+
"eval_sts-test_pearson_manhattan": 0.06296467882181725,
|
65 |
+
"eval_sts-test_pearson_max": 0.2554086617921545,
|
66 |
+
"eval_sts-test_spearman_cosine": 0.08944249572062771,
|
67 |
+
"eval_sts-test_spearman_dot": 0.27863958137561534,
|
68 |
+
"eval_sts-test_spearman_euclidean": 0.06202473500014035,
|
69 |
+
"eval_sts-test_spearman_manhattan": 0.08266825793291849,
|
70 |
+
"eval_sts-test_spearman_max": 0.27863958137561534,
|
71 |
+
"eval_vitaminc-pairs_loss": 2.6973235607147217,
|
72 |
+
"eval_vitaminc-pairs_runtime": 1.4352,
|
73 |
+
"eval_vitaminc-pairs_samples_per_second": 75.251,
|
74 |
+
"eval_vitaminc-pairs_steps_per_second": 1.394,
|
75 |
"step": 1
|
76 |
},
|
77 |
{
|
78 |
+
"epoch": 0.05194805194805195,
|
79 |
+
"eval_negation-triplets_loss": 5.244063854217529,
|
80 |
+
"eval_negation-triplets_runtime": 0.293,
|
81 |
+
"eval_negation-triplets_samples_per_second": 218.403,
|
82 |
+
"eval_negation-triplets_steps_per_second": 3.413,
|
83 |
"step": 1
|
84 |
},
|
85 |
{
|
86 |
+
"epoch": 0.05194805194805195,
|
87 |
+
"eval_scitail-pairs-pos_loss": 1.975368618965149,
|
88 |
+
"eval_scitail-pairs-pos_runtime": 0.3648,
|
89 |
+
"eval_scitail-pairs-pos_samples_per_second": 148.035,
|
90 |
+
"eval_scitail-pairs-pos_steps_per_second": 2.741,
|
91 |
"step": 1
|
92 |
},
|
93 |
{
|
94 |
+
"epoch": 0.05194805194805195,
|
95 |
+
"eval_xsum-pairs_loss": 6.168678283691406,
|
96 |
+
"eval_xsum-pairs_runtime": 3.3419,
|
97 |
+
"eval_xsum-pairs_samples_per_second": 38.302,
|
98 |
+
"eval_xsum-pairs_steps_per_second": 0.598,
|
99 |
"step": 1
|
100 |
},
|
101 |
{
|
102 |
+
"epoch": 0.05194805194805195,
|
103 |
+
"eval_sciq_pairs_loss": 0.9838346838951111,
|
104 |
+
"eval_sciq_pairs_runtime": 3.3684,
|
105 |
+
"eval_sciq_pairs_samples_per_second": 38.0,
|
106 |
+
"eval_sciq_pairs_steps_per_second": 0.594,
|
107 |
"step": 1
|
108 |
},
|
109 |
{
|
110 |
+
"epoch": 0.05194805194805195,
|
111 |
+
"eval_qasc_pairs_loss": 6.569870471954346,
|
112 |
+
"eval_qasc_pairs_runtime": 0.6748,
|
113 |
+
"eval_qasc_pairs_samples_per_second": 189.699,
|
114 |
"eval_qasc_pairs_steps_per_second": 2.964,
|
115 |
"step": 1
|
116 |
},
|
117 |
{
|
118 |
+
"epoch": 0.05194805194805195,
|
119 |
+
"eval_openbookqa_pairs_loss": 4.515223979949951,
|
120 |
+
"eval_openbookqa_pairs_runtime": 0.5729,
|
121 |
+
"eval_openbookqa_pairs_samples_per_second": 223.438,
|
122 |
+
"eval_openbookqa_pairs_steps_per_second": 3.491,
|
123 |
"step": 1
|
124 |
},
|
125 |
{
|
126 |
+
"epoch": 0.05194805194805195,
|
127 |
+
"eval_msmarco_pairs_loss": 7.998310565948486,
|
128 |
+
"eval_msmarco_pairs_runtime": 1.2044,
|
129 |
+
"eval_msmarco_pairs_samples_per_second": 106.278,
|
130 |
+
"eval_msmarco_pairs_steps_per_second": 1.661,
|
131 |
"step": 1
|
132 |
},
|
133 |
{
|
134 |
+
"epoch": 0.05194805194805195,
|
135 |
+
"eval_nq_pairs_loss": 8.03341007232666,
|
136 |
+
"eval_nq_pairs_runtime": 2.7885,
|
137 |
+
"eval_nq_pairs_samples_per_second": 45.903,
|
138 |
+
"eval_nq_pairs_steps_per_second": 0.717,
|
139 |
"step": 1
|
140 |
},
|
141 |
{
|
142 |
+
"epoch": 0.05194805194805195,
|
143 |
+
"eval_trivia_pairs_loss": 6.768779754638672,
|
144 |
+
"eval_trivia_pairs_runtime": 4.0886,
|
145 |
+
"eval_trivia_pairs_samples_per_second": 29.105,
|
146 |
+
"eval_trivia_pairs_steps_per_second": 0.489,
|
147 |
"step": 1
|
148 |
},
|
149 |
{
|
150 |
+
"epoch": 0.05194805194805195,
|
151 |
+
"eval_gooaq_pairs_loss": 6.694434642791748,
|
152 |
+
"eval_gooaq_pairs_runtime": 0.9221,
|
153 |
+
"eval_gooaq_pairs_samples_per_second": 138.819,
|
154 |
+
"eval_gooaq_pairs_steps_per_second": 2.169,
|
155 |
"step": 1
|
156 |
},
|
157 |
{
|
158 |
+
"epoch": 0.05194805194805195,
|
159 |
+
"eval_paws-pos_loss": 2.3459720611572266,
|
160 |
+
"eval_paws-pos_runtime": 0.7324,
|
161 |
+
"eval_paws-pos_samples_per_second": 174.765,
|
162 |
+
"eval_paws-pos_steps_per_second": 2.731,
|
163 |
"step": 1
|
164 |
}
|
165 |
],
|
|
|
181 |
}
|
182 |
},
|
183 |
"total_flos": 0.0,
|
184 |
+
"train_batch_size": 320,
|
185 |
"trial_name": null,
|
186 |
"trial_params": null
|
187 |
}
|
checkpoint-1/training_args.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 5688
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ce662bf5dcaba289d862613e794cf1abf75d3964b4ccae6eef4c74365a1d454b
|
3 |
size 5688
|