bobox commited on
Commit
f821261
1 Parent(s): 68b8a13

Training in progress, step 1, checkpoint

Browse files
checkpoint-1/README.md CHANGED
@@ -168,34 +168,34 @@ model-index:
168
  type: sts-test
169
  metrics:
170
  - type: pearson_cosine
171
- value: 0.01688864747186382
172
  name: Pearson Cosine
173
  - type: spearman_cosine
174
- value: 0.0704767781934101
175
  name: Spearman Cosine
176
  - type: pearson_manhattan
177
- value: 0.05915868944955206
178
  name: Pearson Manhattan
179
  - type: spearman_manhattan
180
- value: 0.07640924890718144
181
  name: Spearman Manhattan
182
  - type: pearson_euclidean
183
- value: 0.02427633810266949
184
  name: Pearson Euclidean
185
  - type: spearman_euclidean
186
- value: 0.0506775286593327
187
  name: Spearman Euclidean
188
  - type: pearson_dot
189
- value: 0.16020781347065607
190
  name: Pearson Dot
191
  - type: spearman_dot
192
- value: 0.19413812590183685
193
  name: Spearman Dot
194
  - type: pearson_max
195
- value: 0.16020781347065607
196
  name: Pearson Max
197
  - type: spearman_max
198
- value: 0.19413812590183685
199
  name: Spearman Max
200
  - task:
201
  type: triplet
@@ -230,55 +230,55 @@ model-index:
230
  value: 0.55078125
231
  name: Cosine Accuracy
232
  - type: cosine_accuracy_threshold
233
- value: 0.9466925859451294
234
  name: Cosine Accuracy Threshold
235
  - type: cosine_f1
236
- value: 0.6525198938992042
237
  name: Cosine F1
238
  - type: cosine_f1_threshold
239
- value: 0.49584439396858215
240
  name: Cosine F1 Threshold
241
  - type: cosine_precision
242
- value: 0.484251968503937
243
  name: Cosine Precision
244
  - type: cosine_recall
245
  value: 1.0
246
  name: Cosine Recall
247
  - type: cosine_ap
248
- value: 0.5153192822743842
249
  name: Cosine Ap
250
  - type: dot_accuracy
251
  value: 0.55078125
252
  name: Dot Accuracy
253
  - type: dot_accuracy_threshold
254
- value: 417.46221923828125
255
  name: Dot Accuracy Threshold
256
  - type: dot_f1
257
- value: 0.6525198938992042
258
  name: Dot F1
259
  - type: dot_f1_threshold
260
- value: 199.873291015625
261
  name: Dot F1 Threshold
262
  - type: dot_precision
263
- value: 0.484251968503937
264
  name: Dot Precision
265
  - type: dot_recall
266
  value: 1.0
267
  name: Dot Recall
268
  - type: dot_ap
269
- value: 0.5127659553715838
270
  name: Dot Ap
271
  - type: manhattan_accuracy
272
- value: 0.546875
273
  name: Manhattan Accuracy
274
  - type: manhattan_accuracy_threshold
275
- value: 117.19680786132812
276
  name: Manhattan Accuracy Threshold
277
  - type: manhattan_f1
278
  value: 0.6542553191489362
279
  name: Manhattan F1
280
  - type: manhattan_f1_threshold
281
- value: 292.8346252441406
282
  name: Manhattan F1 Threshold
283
  - type: manhattan_precision
284
  value: 0.48616600790513836
@@ -287,40 +287,40 @@ model-index:
287
  value: 1.0
288
  name: Manhattan Recall
289
  - type: manhattan_ap
290
- value: 0.5178540867523715
291
  name: Manhattan Ap
292
  - type: euclidean_accuracy
293
- value: 0.546875
294
  name: Euclidean Accuracy
295
  - type: euclidean_accuracy_threshold
296
- value: 6.84520149230957
297
  name: Euclidean Accuracy Threshold
298
  - type: euclidean_f1
299
- value: 0.6525198938992042
300
  name: Euclidean F1
301
  - type: euclidean_f1_threshold
302
- value: 20.29159164428711
303
  name: Euclidean F1 Threshold
304
  - type: euclidean_precision
305
- value: 0.484251968503937
306
  name: Euclidean Precision
307
  - type: euclidean_recall
308
  value: 1.0
309
  name: Euclidean Recall
310
  - type: euclidean_ap
311
- value: 0.5128797056139347
312
  name: Euclidean Ap
313
  - type: max_accuracy
314
  value: 0.55078125
315
  name: Max Accuracy
316
  - type: max_accuracy_threshold
317
- value: 417.46221923828125
318
  name: Max Accuracy Threshold
319
  - type: max_f1
320
  value: 0.6542553191489362
321
  name: Max F1
322
  - type: max_f1_threshold
323
- value: 292.8346252441406
324
  name: Max F1 Threshold
325
  - type: max_precision
326
  value: 0.48616600790513836
@@ -329,7 +329,7 @@ model-index:
329
  value: 1.0
330
  name: Max Recall
331
  - type: max_ap
332
- value: 0.5178540867523715
333
  name: Max Ap
334
  ---
335
 
@@ -392,7 +392,7 @@ Then you can load this model and run inference.
392
  from sentence_transformers import SentenceTransformer
393
 
394
  # Download from the 🤗 Hub
395
- model = SentenceTransformer("bobox/DeBERTa-small-ST-v1-toytest-checkpoints-tmp")
396
  # Run inference
397
  sentences = [
398
  'when is season 2 of the ranch coming to netflix',
@@ -443,16 +443,16 @@ You can finetune this model on your own dataset.
443
 
444
  | Metric | Value |
445
  |:--------------------|:-----------|
446
- | pearson_cosine | 0.0169 |
447
- | **spearman_cosine** | **0.0705** |
448
- | pearson_manhattan | 0.0592 |
449
- | spearman_manhattan | 0.0764 |
450
- | pearson_euclidean | 0.0243 |
451
- | spearman_euclidean | 0.0507 |
452
- | pearson_dot | 0.1602 |
453
- | spearman_dot | 0.1941 |
454
- | pearson_max | 0.1602 |
455
- | spearman_max | 0.1941 |
456
 
457
  #### Triplet
458
  * Dataset: `NLI-v2`
@@ -473,40 +473,40 @@ You can finetune this model on your own dataset.
473
  | Metric | Value |
474
  |:-----------------------------|:-----------|
475
  | cosine_accuracy | 0.5508 |
476
- | cosine_accuracy_threshold | 0.9467 |
477
- | cosine_f1 | 0.6525 |
478
- | cosine_f1_threshold | 0.4958 |
479
- | cosine_precision | 0.4843 |
480
  | cosine_recall | 1.0 |
481
- | cosine_ap | 0.5153 |
482
  | dot_accuracy | 0.5508 |
483
- | dot_accuracy_threshold | 417.4622 |
484
- | dot_f1 | 0.6525 |
485
- | dot_f1_threshold | 199.8733 |
486
- | dot_precision | 0.4843 |
487
  | dot_recall | 1.0 |
488
- | dot_ap | 0.5128 |
489
- | manhattan_accuracy | 0.5469 |
490
- | manhattan_accuracy_threshold | 117.1968 |
491
  | manhattan_f1 | 0.6543 |
492
- | manhattan_f1_threshold | 292.8346 |
493
  | manhattan_precision | 0.4862 |
494
  | manhattan_recall | 1.0 |
495
- | manhattan_ap | 0.5179 |
496
- | euclidean_accuracy | 0.5469 |
497
- | euclidean_accuracy_threshold | 6.8452 |
498
- | euclidean_f1 | 0.6525 |
499
- | euclidean_f1_threshold | 20.2916 |
500
- | euclidean_precision | 0.4843 |
501
  | euclidean_recall | 1.0 |
502
- | euclidean_ap | 0.5129 |
503
  | max_accuracy | 0.5508 |
504
- | max_accuracy_threshold | 417.4622 |
505
  | max_f1 | 0.6543 |
506
- | max_f1_threshold | 292.8346 |
507
  | max_precision | 0.4862 |
508
  | max_recall | 1.0 |
509
- | **max_ap** | **0.5179** |
510
 
511
  <!--
512
  ## Bias, Risks and Limitations
@@ -1155,15 +1155,15 @@ You can finetune this model on your own dataset.
1155
  #### Non-Default Hyperparameters
1156
 
1157
  - `eval_strategy`: steps
1158
- - `per_device_train_batch_size`: 160
1159
  - `per_device_eval_batch_size`: 64
1160
- - `gradient_accumulation_steps`: 8
1161
  - `learning_rate`: 4e-05
1162
- - `weight_decay`: 0.0001
1163
  - `num_train_epochs`: 0.1
1164
  - `lr_scheduler_type`: cosine_with_min_lr
1165
- - `lr_scheduler_kwargs`: {'num_cycles': 0.5, 'min_lr': 1.3333333333333335e-05}
1166
- - `warmup_ratio`: 0.33
1167
  - `save_safetensors`: False
1168
  - `fp16`: True
1169
  - `push_to_hub`: True
@@ -1178,14 +1178,14 @@ You can finetune this model on your own dataset.
1178
  - `do_predict`: False
1179
  - `eval_strategy`: steps
1180
  - `prediction_loss_only`: True
1181
- - `per_device_train_batch_size`: 160
1182
  - `per_device_eval_batch_size`: 64
1183
  - `per_gpu_train_batch_size`: None
1184
  - `per_gpu_eval_batch_size`: None
1185
- - `gradient_accumulation_steps`: 8
1186
  - `eval_accumulation_steps`: None
1187
  - `learning_rate`: 4e-05
1188
- - `weight_decay`: 0.0001
1189
  - `adam_beta1`: 0.9
1190
  - `adam_beta2`: 0.999
1191
  - `adam_epsilon`: 1e-08
@@ -1193,8 +1193,8 @@ You can finetune this model on your own dataset.
1193
  - `num_train_epochs`: 0.1
1194
  - `max_steps`: -1
1195
  - `lr_scheduler_type`: cosine_with_min_lr
1196
- - `lr_scheduler_kwargs`: {'num_cycles': 0.5, 'min_lr': 1.3333333333333335e-05}
1197
- - `warmup_ratio`: 0.33
1198
  - `warmup_steps`: 0
1199
  - `log_level`: passive
1200
  - `log_level_replica`: warning
@@ -1290,6 +1290,8 @@ You can finetune this model on your own dataset.
1290
  | Epoch | Step | Training Loss | negation-triplets loss | vitaminc-pairs loss | qasc pairs loss | scitail-pairs-pos loss | gooaq pairs loss | xsum-pairs loss | paws-pos loss | nq pairs loss | msmarco pairs loss | openbookqa pairs loss | trivia pairs loss | sciq pairs loss | NLI-v2_max_accuracy | VitaminC_max_ap | sts-test_spearman_cosine |
1291
  |:------:|:----:|:-------------:|:----------------------:|:-------------------:|:---------------:|:----------------------:|:----------------:|:---------------:|:-------------:|:-------------:|:------------------:|:---------------------:|:-----------------:|:---------------:|:-------------------:|:---------------:|:------------------------:|
1292
  | 0.0548 | 1 | 6.851 | 5.2593 | 2.7279 | 7.9013 | 1.9180 | 8.1263 | 6.3900 | 2.2178 | 10.4461 | 10.6071 | 4.7477 | 7.8702 | 1.1206 | 1.0 | 0.5179 | 0.0705 |
 
 
1293
 
1294
 
1295
  ### Framework Versions
 
168
  type: sts-test
169
  metrics:
170
  - type: pearson_cosine
171
+ value: 0.033928485348000664
172
  name: Pearson Cosine
173
  - type: spearman_cosine
174
+ value: 0.08944249572062771
175
  name: Spearman Cosine
176
  - type: pearson_manhattan
177
+ value: 0.06296467882181725
178
  name: Pearson Manhattan
179
  - type: spearman_manhattan
180
+ value: 0.08266825793291849
181
  name: Spearman Manhattan
182
  - type: pearson_euclidean
183
+ value: 0.03489200141716902
184
  name: Pearson Euclidean
185
  - type: spearman_euclidean
186
+ value: 0.06202473500014035
187
  name: Spearman Euclidean
188
  - type: pearson_dot
189
+ value: 0.2554086617921545
190
  name: Pearson Dot
191
  - type: spearman_dot
192
+ value: 0.27863958137561534
193
  name: Spearman Dot
194
  - type: pearson_max
195
+ value: 0.2554086617921545
196
  name: Pearson Max
197
  - type: spearman_max
198
+ value: 0.27863958137561534
199
  name: Spearman Max
200
  - task:
201
  type: triplet
 
230
  value: 0.55078125
231
  name: Cosine Accuracy
232
  - type: cosine_accuracy_threshold
233
+ value: 0.9503422379493713
234
  name: Cosine Accuracy Threshold
235
  - type: cosine_f1
236
+ value: 0.6542553191489362
237
  name: Cosine F1
238
  - type: cosine_f1_threshold
239
+ value: 0.656802773475647
240
  name: Cosine F1 Threshold
241
  - type: cosine_precision
242
+ value: 0.48616600790513836
243
  name: Cosine Precision
244
  - type: cosine_recall
245
  value: 1.0
246
  name: Cosine Recall
247
  - type: cosine_ap
248
+ value: 0.5203148129920425
249
  name: Cosine Ap
250
  - type: dot_accuracy
251
  value: 0.55078125
252
  name: Dot Accuracy
253
  - type: dot_accuracy_threshold
254
+ value: 425.30816650390625
255
  name: Dot Accuracy Threshold
256
  - type: dot_f1
257
+ value: 0.6542553191489362
258
  name: Dot F1
259
  - type: dot_f1_threshold
260
+ value: 262.8174743652344
261
  name: Dot F1 Threshold
262
  - type: dot_precision
263
+ value: 0.48616600790513836
264
  name: Dot Precision
265
  - type: dot_recall
266
  value: 1.0
267
  name: Dot Recall
268
  - type: dot_ap
269
+ value: 0.5120444819966403
270
  name: Dot Ap
271
  - type: manhattan_accuracy
272
+ value: 0.5390625
273
  name: Manhattan Accuracy
274
  - type: manhattan_accuracy_threshold
275
+ value: 107.76934814453125
276
  name: Manhattan Accuracy Threshold
277
  - type: manhattan_f1
278
  value: 0.6542553191489362
279
  name: Manhattan F1
280
  - type: manhattan_f1_threshold
281
+ value: 271.5865478515625
282
  name: Manhattan F1 Threshold
283
  - type: manhattan_precision
284
  value: 0.48616600790513836
 
287
  value: 1.0
288
  name: Manhattan Recall
289
  - type: manhattan_ap
290
+ value: 0.5208015383309144
291
  name: Manhattan Ap
292
  - type: euclidean_accuracy
293
+ value: 0.55078125
294
  name: Euclidean Accuracy
295
  - type: euclidean_accuracy_threshold
296
+ value: 7.050784111022949
297
  name: Euclidean Accuracy Threshold
298
  - type: euclidean_f1
299
+ value: 0.6507936507936508
300
  name: Euclidean F1
301
  - type: euclidean_f1_threshold
302
+ value: 17.465972900390625
303
  name: Euclidean F1 Threshold
304
  - type: euclidean_precision
305
+ value: 0.4823529411764706
306
  name: Euclidean Precision
307
  - type: euclidean_recall
308
  value: 1.0
309
  name: Euclidean Recall
310
  - type: euclidean_ap
311
+ value: 0.5175301700973289
312
  name: Euclidean Ap
313
  - type: max_accuracy
314
  value: 0.55078125
315
  name: Max Accuracy
316
  - type: max_accuracy_threshold
317
+ value: 425.30816650390625
318
  name: Max Accuracy Threshold
319
  - type: max_f1
320
  value: 0.6542553191489362
321
  name: Max F1
322
  - type: max_f1_threshold
323
+ value: 271.5865478515625
324
  name: Max F1 Threshold
325
  - type: max_precision
326
  value: 0.48616600790513836
 
329
  value: 1.0
330
  name: Max Recall
331
  - type: max_ap
332
+ value: 0.5208015383309144
333
  name: Max Ap
334
  ---
335
 
 
392
  from sentence_transformers import SentenceTransformer
393
 
394
  # Download from the 🤗 Hub
395
+ model = SentenceTransformer("bobox/DeBERTa-small-ST-v1-toytest")
396
  # Run inference
397
  sentences = [
398
  'when is season 2 of the ranch coming to netflix',
 
443
 
444
  | Metric | Value |
445
  |:--------------------|:-----------|
446
+ | pearson_cosine | 0.0339 |
447
+ | **spearman_cosine** | **0.0894** |
448
+ | pearson_manhattan | 0.063 |
449
+ | spearman_manhattan | 0.0827 |
450
+ | pearson_euclidean | 0.0349 |
451
+ | spearman_euclidean | 0.062 |
452
+ | pearson_dot | 0.2554 |
453
+ | spearman_dot | 0.2786 |
454
+ | pearson_max | 0.2554 |
455
+ | spearman_max | 0.2786 |
456
 
457
  #### Triplet
458
  * Dataset: `NLI-v2`
 
473
  | Metric | Value |
474
  |:-----------------------------|:-----------|
475
  | cosine_accuracy | 0.5508 |
476
+ | cosine_accuracy_threshold | 0.9503 |
477
+ | cosine_f1 | 0.6543 |
478
+ | cosine_f1_threshold | 0.6568 |
479
+ | cosine_precision | 0.4862 |
480
  | cosine_recall | 1.0 |
481
+ | cosine_ap | 0.5203 |
482
  | dot_accuracy | 0.5508 |
483
+ | dot_accuracy_threshold | 425.3082 |
484
+ | dot_f1 | 0.6543 |
485
+ | dot_f1_threshold | 262.8175 |
486
+ | dot_precision | 0.4862 |
487
  | dot_recall | 1.0 |
488
+ | dot_ap | 0.512 |
489
+ | manhattan_accuracy | 0.5391 |
490
+ | manhattan_accuracy_threshold | 107.7693 |
491
  | manhattan_f1 | 0.6543 |
492
+ | manhattan_f1_threshold | 271.5865 |
493
  | manhattan_precision | 0.4862 |
494
  | manhattan_recall | 1.0 |
495
+ | manhattan_ap | 0.5208 |
496
+ | euclidean_accuracy | 0.5508 |
497
+ | euclidean_accuracy_threshold | 7.0508 |
498
+ | euclidean_f1 | 0.6508 |
499
+ | euclidean_f1_threshold | 17.466 |
500
+ | euclidean_precision | 0.4824 |
501
  | euclidean_recall | 1.0 |
502
+ | euclidean_ap | 0.5175 |
503
  | max_accuracy | 0.5508 |
504
+ | max_accuracy_threshold | 425.3082 |
505
  | max_f1 | 0.6543 |
506
+ | max_f1_threshold | 271.5865 |
507
  | max_precision | 0.4862 |
508
  | max_recall | 1.0 |
509
+ | **max_ap** | **0.5208** |
510
 
511
  <!--
512
  ## Bias, Risks and Limitations
 
1155
  #### Non-Default Hyperparameters
1156
 
1157
  - `eval_strategy`: steps
1158
+ - `per_device_train_batch_size`: 320
1159
  - `per_device_eval_batch_size`: 64
1160
+ - `gradient_accumulation_steps`: 4
1161
  - `learning_rate`: 4e-05
1162
+ - `weight_decay`: 5e-05
1163
  - `num_train_epochs`: 0.1
1164
  - `lr_scheduler_type`: cosine_with_min_lr
1165
+ - `lr_scheduler_kwargs`: {'num_cycles': 0.5, 'min_lr': 1e-05}
1166
+ - `warmup_ratio`: 0.15
1167
  - `save_safetensors`: False
1168
  - `fp16`: True
1169
  - `push_to_hub`: True
 
1178
  - `do_predict`: False
1179
  - `eval_strategy`: steps
1180
  - `prediction_loss_only`: True
1181
+ - `per_device_train_batch_size`: 320
1182
  - `per_device_eval_batch_size`: 64
1183
  - `per_gpu_train_batch_size`: None
1184
  - `per_gpu_eval_batch_size`: None
1185
+ - `gradient_accumulation_steps`: 4
1186
  - `eval_accumulation_steps`: None
1187
  - `learning_rate`: 4e-05
1188
+ - `weight_decay`: 5e-05
1189
  - `adam_beta1`: 0.9
1190
  - `adam_beta2`: 0.999
1191
  - `adam_epsilon`: 1e-08
 
1193
  - `num_train_epochs`: 0.1
1194
  - `max_steps`: -1
1195
  - `lr_scheduler_type`: cosine_with_min_lr
1196
+ - `lr_scheduler_kwargs`: {'num_cycles': 0.5, 'min_lr': 1e-05}
1197
+ - `warmup_ratio`: 0.15
1198
  - `warmup_steps`: 0
1199
  - `log_level`: passive
1200
  - `log_level_replica`: warning
 
1290
  | Epoch | Step | Training Loss | negation-triplets loss | vitaminc-pairs loss | qasc pairs loss | scitail-pairs-pos loss | gooaq pairs loss | xsum-pairs loss | paws-pos loss | nq pairs loss | msmarco pairs loss | openbookqa pairs loss | trivia pairs loss | sciq pairs loss | NLI-v2_max_accuracy | VitaminC_max_ap | sts-test_spearman_cosine |
1291
  |:------:|:----:|:-------------:|:----------------------:|:-------------------:|:---------------:|:----------------------:|:----------------:|:---------------:|:-------------:|:-------------:|:------------------:|:---------------------:|:-----------------:|:---------------:|:-------------------:|:---------------:|:------------------------:|
1292
  | 0.0548 | 1 | 6.851 | 5.2593 | 2.7279 | 7.9013 | 1.9180 | 8.1263 | 6.3900 | 2.2178 | 10.4461 | 10.6071 | 4.7477 | 7.8702 | 1.1206 | 1.0 | 0.5179 | 0.0705 |
1293
+ | 0.1096 | 2 | 7.0772 | 5.2441 | 2.6973 | 6.5699 | 1.9754 | 6.6944 | 6.1687 | 2.3460 | 8.0334 | 7.9983 | 4.5152 | 6.7688 | 0.9838 | 1.0 | 0.5208 | 0.0894 |
1294
+ | 0.0519 | 1 | 7.4907 | 5.2441 | 2.6973 | 6.5699 | 1.9754 | 6.6944 | 6.1687 | 2.3460 | 8.0334 | 7.9983 | 4.5152 | 6.7688 | 0.9838 | 1.0 | 0.5208 | 0.0894 |
1295
 
1296
 
1297
  ### Framework Versions
checkpoint-1/optimizer.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:aabe9a3d980e783926dd69a89875e5beb9cc987ee70c92c26e2fb87a94434131
3
  size 1130520122
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2559a3b3dfddec8028d1fe2bf75a77ee9151c2eab3dedeb6242d0d710fc8a441
3
  size 1130520122
checkpoint-1/pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:746e90be4f1fd2037efed931baab61aec80c17d7b250b7618290bcd8ec2c09fb
3
  size 565251810
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:deabaff50d850f82996bcefd758e8747428f8bf3eb8ff3287402bd7ebb10f5f8
3
  size 565251810
checkpoint-1/rng_state.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:39e31a009a68f800d7116d7dc544c153ec26170c60d13a9695fe05d2a6366f41
3
  size 14244
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d0c73f90426d27a0931c2aab6eaba0594fa6ddaafc6b254dfc4cf59a3d75971a
3
  size 14244
checkpoint-1/trainer_state.json CHANGED
@@ -1,7 +1,7 @@
1
  {
2
  "best_metric": null,
3
  "best_model_checkpoint": null,
4
- "epoch": 0.0547945205479452,
5
  "eval_steps": 1,
6
  "global_step": 1,
7
  "is_hyper_param_search": false,
@@ -9,157 +9,157 @@
9
  "is_world_process_zero": true,
10
  "log_history": [
11
  {
12
- "epoch": 0.0547945205479452,
13
- "grad_norm": 17.049646377563477,
14
  "learning_rate": 4e-05,
15
- "loss": 6.851,
16
  "step": 1
17
  },
18
  {
19
- "epoch": 0.0547945205479452,
20
  "eval_NLI-v2_cosine_accuracy": 1.0,
21
  "eval_NLI-v2_dot_accuracy": 0.125,
22
  "eval_NLI-v2_euclidean_accuracy": 1.0,
23
  "eval_NLI-v2_manhattan_accuracy": 1.0,
24
  "eval_NLI-v2_max_accuracy": 1.0,
25
  "eval_VitaminC_cosine_accuracy": 0.55078125,
26
- "eval_VitaminC_cosine_accuracy_threshold": 0.9466925859451294,
27
- "eval_VitaminC_cosine_ap": 0.5153192822743842,
28
- "eval_VitaminC_cosine_f1": 0.6525198938992042,
29
- "eval_VitaminC_cosine_f1_threshold": 0.49584439396858215,
30
- "eval_VitaminC_cosine_precision": 0.484251968503937,
31
  "eval_VitaminC_cosine_recall": 1.0,
32
  "eval_VitaminC_dot_accuracy": 0.55078125,
33
- "eval_VitaminC_dot_accuracy_threshold": 417.46221923828125,
34
- "eval_VitaminC_dot_ap": 0.5127659553715838,
35
- "eval_VitaminC_dot_f1": 0.6525198938992042,
36
- "eval_VitaminC_dot_f1_threshold": 199.873291015625,
37
- "eval_VitaminC_dot_precision": 0.484251968503937,
38
  "eval_VitaminC_dot_recall": 1.0,
39
- "eval_VitaminC_euclidean_accuracy": 0.546875,
40
- "eval_VitaminC_euclidean_accuracy_threshold": 6.84520149230957,
41
- "eval_VitaminC_euclidean_ap": 0.5128797056139347,
42
- "eval_VitaminC_euclidean_f1": 0.6525198938992042,
43
- "eval_VitaminC_euclidean_f1_threshold": 20.29159164428711,
44
- "eval_VitaminC_euclidean_precision": 0.484251968503937,
45
  "eval_VitaminC_euclidean_recall": 1.0,
46
- "eval_VitaminC_manhattan_accuracy": 0.546875,
47
- "eval_VitaminC_manhattan_accuracy_threshold": 117.19680786132812,
48
- "eval_VitaminC_manhattan_ap": 0.5178540867523715,
49
  "eval_VitaminC_manhattan_f1": 0.6542553191489362,
50
- "eval_VitaminC_manhattan_f1_threshold": 292.8346252441406,
51
  "eval_VitaminC_manhattan_precision": 0.48616600790513836,
52
  "eval_VitaminC_manhattan_recall": 1.0,
53
  "eval_VitaminC_max_accuracy": 0.55078125,
54
- "eval_VitaminC_max_accuracy_threshold": 417.46221923828125,
55
- "eval_VitaminC_max_ap": 0.5178540867523715,
56
  "eval_VitaminC_max_f1": 0.6542553191489362,
57
- "eval_VitaminC_max_f1_threshold": 292.8346252441406,
58
  "eval_VitaminC_max_precision": 0.48616600790513836,
59
  "eval_VitaminC_max_recall": 1.0,
60
- "eval_sequential_score": 0.5178540867523715,
61
- "eval_sts-test_pearson_cosine": 0.01688864747186382,
62
- "eval_sts-test_pearson_dot": 0.16020781347065607,
63
- "eval_sts-test_pearson_euclidean": 0.02427633810266949,
64
- "eval_sts-test_pearson_manhattan": 0.05915868944955206,
65
- "eval_sts-test_pearson_max": 0.16020781347065607,
66
- "eval_sts-test_spearman_cosine": 0.0704767781934101,
67
- "eval_sts-test_spearman_dot": 0.19413812590183685,
68
- "eval_sts-test_spearman_euclidean": 0.0506775286593327,
69
- "eval_sts-test_spearman_manhattan": 0.07640924890718144,
70
- "eval_sts-test_spearman_max": 0.19413812590183685,
71
- "eval_vitaminc-pairs_loss": 2.7278947830200195,
72
- "eval_vitaminc-pairs_runtime": 1.5228,
73
- "eval_vitaminc-pairs_samples_per_second": 70.92,
74
- "eval_vitaminc-pairs_steps_per_second": 1.313,
75
  "step": 1
76
  },
77
  {
78
- "epoch": 0.0547945205479452,
79
- "eval_negation-triplets_loss": 5.259257793426514,
80
- "eval_negation-triplets_runtime": 0.3007,
81
- "eval_negation-triplets_samples_per_second": 212.85,
82
- "eval_negation-triplets_steps_per_second": 3.326,
83
  "step": 1
84
  },
85
  {
86
- "epoch": 0.0547945205479452,
87
- "eval_scitail-pairs-pos_loss": 1.9180195331573486,
88
- "eval_scitail-pairs-pos_runtime": 0.4022,
89
- "eval_scitail-pairs-pos_samples_per_second": 134.25,
90
- "eval_scitail-pairs-pos_steps_per_second": 2.486,
91
  "step": 1
92
  },
93
  {
94
- "epoch": 0.0547945205479452,
95
- "eval_xsum-pairs_loss": 6.389987945556641,
96
- "eval_xsum-pairs_runtime": 3.3036,
97
- "eval_xsum-pairs_samples_per_second": 38.746,
98
- "eval_xsum-pairs_steps_per_second": 0.605,
99
  "step": 1
100
  },
101
  {
102
- "epoch": 0.0547945205479452,
103
- "eval_sciq_pairs_loss": 1.1206029653549194,
104
- "eval_sciq_pairs_runtime": 3.3516,
105
- "eval_sciq_pairs_samples_per_second": 38.191,
106
- "eval_sciq_pairs_steps_per_second": 0.597,
107
  "step": 1
108
  },
109
  {
110
- "epoch": 0.0547945205479452,
111
- "eval_qasc_pairs_loss": 7.901282787322998,
112
- "eval_qasc_pairs_runtime": 0.6747,
113
- "eval_qasc_pairs_samples_per_second": 189.709,
114
  "eval_qasc_pairs_steps_per_second": 2.964,
115
  "step": 1
116
  },
117
  {
118
- "epoch": 0.0547945205479452,
119
- "eval_openbookqa_pairs_loss": 4.747707366943359,
120
- "eval_openbookqa_pairs_runtime": 0.5849,
121
- "eval_openbookqa_pairs_samples_per_second": 218.847,
122
- "eval_openbookqa_pairs_steps_per_second": 3.419,
123
  "step": 1
124
  },
125
  {
126
- "epoch": 0.0547945205479452,
127
- "eval_msmarco_pairs_loss": 10.60707950592041,
128
- "eval_msmarco_pairs_runtime": 1.2013,
129
- "eval_msmarco_pairs_samples_per_second": 106.551,
130
- "eval_msmarco_pairs_steps_per_second": 1.665,
131
  "step": 1
132
  },
133
  {
134
- "epoch": 0.0547945205479452,
135
- "eval_nq_pairs_loss": 10.446059226989746,
136
- "eval_nq_pairs_runtime": 2.7595,
137
- "eval_nq_pairs_samples_per_second": 46.385,
138
- "eval_nq_pairs_steps_per_second": 0.725,
139
  "step": 1
140
  },
141
  {
142
- "epoch": 0.0547945205479452,
143
- "eval_trivia_pairs_loss": 7.870224952697754,
144
- "eval_trivia_pairs_runtime": 3.9907,
145
- "eval_trivia_pairs_samples_per_second": 29.819,
146
- "eval_trivia_pairs_steps_per_second": 0.501,
147
  "step": 1
148
  },
149
  {
150
- "epoch": 0.0547945205479452,
151
- "eval_gooaq_pairs_loss": 8.126296997070312,
152
- "eval_gooaq_pairs_runtime": 0.8871,
153
- "eval_gooaq_pairs_samples_per_second": 144.296,
154
- "eval_gooaq_pairs_steps_per_second": 2.255,
155
  "step": 1
156
  },
157
  {
158
- "epoch": 0.0547945205479452,
159
- "eval_paws-pos_loss": 2.2177822589874268,
160
- "eval_paws-pos_runtime": 0.69,
161
- "eval_paws-pos_samples_per_second": 185.509,
162
- "eval_paws-pos_steps_per_second": 2.899,
163
  "step": 1
164
  }
165
  ],
@@ -181,7 +181,7 @@
181
  }
182
  },
183
  "total_flos": 0.0,
184
- "train_batch_size": 160,
185
  "trial_name": null,
186
  "trial_params": null
187
  }
 
1
  {
2
  "best_metric": null,
3
  "best_model_checkpoint": null,
4
+ "epoch": 0.05194805194805195,
5
  "eval_steps": 1,
6
  "global_step": 1,
7
  "is_hyper_param_search": false,
 
9
  "is_world_process_zero": true,
10
  "log_history": [
11
  {
12
+ "epoch": 0.05194805194805195,
13
+ "grad_norm": 15.329390525817871,
14
  "learning_rate": 4e-05,
15
+ "loss": 7.4907,
16
  "step": 1
17
  },
18
  {
19
+ "epoch": 0.05194805194805195,
20
  "eval_NLI-v2_cosine_accuracy": 1.0,
21
  "eval_NLI-v2_dot_accuracy": 0.125,
22
  "eval_NLI-v2_euclidean_accuracy": 1.0,
23
  "eval_NLI-v2_manhattan_accuracy": 1.0,
24
  "eval_NLI-v2_max_accuracy": 1.0,
25
  "eval_VitaminC_cosine_accuracy": 0.55078125,
26
+ "eval_VitaminC_cosine_accuracy_threshold": 0.9503422379493713,
27
+ "eval_VitaminC_cosine_ap": 0.5203148129920425,
28
+ "eval_VitaminC_cosine_f1": 0.6542553191489362,
29
+ "eval_VitaminC_cosine_f1_threshold": 0.656802773475647,
30
+ "eval_VitaminC_cosine_precision": 0.48616600790513836,
31
  "eval_VitaminC_cosine_recall": 1.0,
32
  "eval_VitaminC_dot_accuracy": 0.55078125,
33
+ "eval_VitaminC_dot_accuracy_threshold": 425.30816650390625,
34
+ "eval_VitaminC_dot_ap": 0.5120444819966403,
35
+ "eval_VitaminC_dot_f1": 0.6542553191489362,
36
+ "eval_VitaminC_dot_f1_threshold": 262.8174743652344,
37
+ "eval_VitaminC_dot_precision": 0.48616600790513836,
38
  "eval_VitaminC_dot_recall": 1.0,
39
+ "eval_VitaminC_euclidean_accuracy": 0.55078125,
40
+ "eval_VitaminC_euclidean_accuracy_threshold": 7.050784111022949,
41
+ "eval_VitaminC_euclidean_ap": 0.5175301700973289,
42
+ "eval_VitaminC_euclidean_f1": 0.6507936507936508,
43
+ "eval_VitaminC_euclidean_f1_threshold": 17.465972900390625,
44
+ "eval_VitaminC_euclidean_precision": 0.4823529411764706,
45
  "eval_VitaminC_euclidean_recall": 1.0,
46
+ "eval_VitaminC_manhattan_accuracy": 0.5390625,
47
+ "eval_VitaminC_manhattan_accuracy_threshold": 107.76934814453125,
48
+ "eval_VitaminC_manhattan_ap": 0.5208015383309144,
49
  "eval_VitaminC_manhattan_f1": 0.6542553191489362,
50
+ "eval_VitaminC_manhattan_f1_threshold": 271.5865478515625,
51
  "eval_VitaminC_manhattan_precision": 0.48616600790513836,
52
  "eval_VitaminC_manhattan_recall": 1.0,
53
  "eval_VitaminC_max_accuracy": 0.55078125,
54
+ "eval_VitaminC_max_accuracy_threshold": 425.30816650390625,
55
+ "eval_VitaminC_max_ap": 0.5208015383309144,
56
  "eval_VitaminC_max_f1": 0.6542553191489362,
57
+ "eval_VitaminC_max_f1_threshold": 271.5865478515625,
58
  "eval_VitaminC_max_precision": 0.48616600790513836,
59
  "eval_VitaminC_max_recall": 1.0,
60
+ "eval_sequential_score": 0.5208015383309144,
61
+ "eval_sts-test_pearson_cosine": 0.033928485348000664,
62
+ "eval_sts-test_pearson_dot": 0.2554086617921545,
63
+ "eval_sts-test_pearson_euclidean": 0.03489200141716902,
64
+ "eval_sts-test_pearson_manhattan": 0.06296467882181725,
65
+ "eval_sts-test_pearson_max": 0.2554086617921545,
66
+ "eval_sts-test_spearman_cosine": 0.08944249572062771,
67
+ "eval_sts-test_spearman_dot": 0.27863958137561534,
68
+ "eval_sts-test_spearman_euclidean": 0.06202473500014035,
69
+ "eval_sts-test_spearman_manhattan": 0.08266825793291849,
70
+ "eval_sts-test_spearman_max": 0.27863958137561534,
71
+ "eval_vitaminc-pairs_loss": 2.6973235607147217,
72
+ "eval_vitaminc-pairs_runtime": 1.4352,
73
+ "eval_vitaminc-pairs_samples_per_second": 75.251,
74
+ "eval_vitaminc-pairs_steps_per_second": 1.394,
75
  "step": 1
76
  },
77
  {
78
+ "epoch": 0.05194805194805195,
79
+ "eval_negation-triplets_loss": 5.244063854217529,
80
+ "eval_negation-triplets_runtime": 0.293,
81
+ "eval_negation-triplets_samples_per_second": 218.403,
82
+ "eval_negation-triplets_steps_per_second": 3.413,
83
  "step": 1
84
  },
85
  {
86
+ "epoch": 0.05194805194805195,
87
+ "eval_scitail-pairs-pos_loss": 1.975368618965149,
88
+ "eval_scitail-pairs-pos_runtime": 0.3648,
89
+ "eval_scitail-pairs-pos_samples_per_second": 148.035,
90
+ "eval_scitail-pairs-pos_steps_per_second": 2.741,
91
  "step": 1
92
  },
93
  {
94
+ "epoch": 0.05194805194805195,
95
+ "eval_xsum-pairs_loss": 6.168678283691406,
96
+ "eval_xsum-pairs_runtime": 3.3419,
97
+ "eval_xsum-pairs_samples_per_second": 38.302,
98
+ "eval_xsum-pairs_steps_per_second": 0.598,
99
  "step": 1
100
  },
101
  {
102
+ "epoch": 0.05194805194805195,
103
+ "eval_sciq_pairs_loss": 0.9838346838951111,
104
+ "eval_sciq_pairs_runtime": 3.3684,
105
+ "eval_sciq_pairs_samples_per_second": 38.0,
106
+ "eval_sciq_pairs_steps_per_second": 0.594,
107
  "step": 1
108
  },
109
  {
110
+ "epoch": 0.05194805194805195,
111
+ "eval_qasc_pairs_loss": 6.569870471954346,
112
+ "eval_qasc_pairs_runtime": 0.6748,
113
+ "eval_qasc_pairs_samples_per_second": 189.699,
114
  "eval_qasc_pairs_steps_per_second": 2.964,
115
  "step": 1
116
  },
117
  {
118
+ "epoch": 0.05194805194805195,
119
+ "eval_openbookqa_pairs_loss": 4.515223979949951,
120
+ "eval_openbookqa_pairs_runtime": 0.5729,
121
+ "eval_openbookqa_pairs_samples_per_second": 223.438,
122
+ "eval_openbookqa_pairs_steps_per_second": 3.491,
123
  "step": 1
124
  },
125
  {
126
+ "epoch": 0.05194805194805195,
127
+ "eval_msmarco_pairs_loss": 7.998310565948486,
128
+ "eval_msmarco_pairs_runtime": 1.2044,
129
+ "eval_msmarco_pairs_samples_per_second": 106.278,
130
+ "eval_msmarco_pairs_steps_per_second": 1.661,
131
  "step": 1
132
  },
133
  {
134
+ "epoch": 0.05194805194805195,
135
+ "eval_nq_pairs_loss": 8.03341007232666,
136
+ "eval_nq_pairs_runtime": 2.7885,
137
+ "eval_nq_pairs_samples_per_second": 45.903,
138
+ "eval_nq_pairs_steps_per_second": 0.717,
139
  "step": 1
140
  },
141
  {
142
+ "epoch": 0.05194805194805195,
143
+ "eval_trivia_pairs_loss": 6.768779754638672,
144
+ "eval_trivia_pairs_runtime": 4.0886,
145
+ "eval_trivia_pairs_samples_per_second": 29.105,
146
+ "eval_trivia_pairs_steps_per_second": 0.489,
147
  "step": 1
148
  },
149
  {
150
+ "epoch": 0.05194805194805195,
151
+ "eval_gooaq_pairs_loss": 6.694434642791748,
152
+ "eval_gooaq_pairs_runtime": 0.9221,
153
+ "eval_gooaq_pairs_samples_per_second": 138.819,
154
+ "eval_gooaq_pairs_steps_per_second": 2.169,
155
  "step": 1
156
  },
157
  {
158
+ "epoch": 0.05194805194805195,
159
+ "eval_paws-pos_loss": 2.3459720611572266,
160
+ "eval_paws-pos_runtime": 0.7324,
161
+ "eval_paws-pos_samples_per_second": 174.765,
162
+ "eval_paws-pos_steps_per_second": 2.731,
163
  "step": 1
164
  }
165
  ],
 
181
  }
182
  },
183
  "total_flos": 0.0,
184
+ "train_batch_size": 320,
185
  "trial_name": null,
186
  "trial_params": null
187
  }
checkpoint-1/training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7d8ee34c18a400f97b88a2eac5f9619f6acd81ed3e37e87a781d225dd83c9b5d
3
  size 5688
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ce662bf5dcaba289d862613e794cf1abf75d3964b4ccae6eef4c74365a1d454b
3
  size 5688