File size: 1,970 Bytes
f7e620a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
base_model: airesearch/wangchanberta-base-att-spm-uncased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: lst20-orchid-baseline-new
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# lst20-orchid-baseline-new

This model is a fine-tuned version of [airesearch/wangchanberta-base-att-spm-uncased](https://huggingface.co/airesearch/wangchanberta-base-att-spm-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1383
- Precision: 0.8460
- Recall: 0.6761
- F1: 0.7516
- Accuracy: 0.9460

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.1753        | 1.0   | 1425 | 0.1463          | 0.8332    | 0.6466 | 0.7281 | 0.9417   |
| 0.1513        | 2.0   | 2850 | 0.1457          | 0.8829    | 0.6099 | 0.7214 | 0.9431   |
| 0.1393        | 3.0   | 4275 | 0.1388          | 0.8607    | 0.6495 | 0.7403 | 0.9450   |
| 0.129         | 4.0   | 5700 | 0.1394          | 0.8561    | 0.6596 | 0.7451 | 0.9455   |
| 0.1266        | 5.0   | 7125 | 0.1383          | 0.8460    | 0.6761 | 0.7516 | 0.9460   |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2