File size: 1,970 Bytes
f7e620a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
base_model: airesearch/wangchanberta-base-att-spm-uncased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: lst20-orchid-baseline-new
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# lst20-orchid-baseline-new
This model is a fine-tuned version of [airesearch/wangchanberta-base-att-spm-uncased](https://huggingface.co/airesearch/wangchanberta-base-att-spm-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1383
- Precision: 0.8460
- Recall: 0.6761
- F1: 0.7516
- Accuracy: 0.9460
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.1753 | 1.0 | 1425 | 0.1463 | 0.8332 | 0.6466 | 0.7281 | 0.9417 |
| 0.1513 | 2.0 | 2850 | 0.1457 | 0.8829 | 0.6099 | 0.7214 | 0.9431 |
| 0.1393 | 3.0 | 4275 | 0.1388 | 0.8607 | 0.6495 | 0.7403 | 0.9450 |
| 0.129 | 4.0 | 5700 | 0.1394 | 0.8561 | 0.6596 | 0.7451 | 0.9455 |
| 0.1266 | 5.0 | 7125 | 0.1383 | 0.8460 | 0.6761 | 0.7516 | 0.9460 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|