--- license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer datasets: - audiofolder metrics: - accuracy model-index: - name: my_birdcall_model results: - task: name: Audio Classification type: audio-classification dataset: name: audiofolder type: audiofolder config: rb split: train[:5000] args: rb metrics: - name: Accuracy type: accuracy value: 0.26 --- # my_birdcall_model This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 3.1584 - Accuracy: 0.26 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 4.9434 | 0.99 | 31 | 4.8016 | 0.108 | | 4.5209 | 1.98 | 62 | 4.3832 | 0.108 | | 4.1573 | 2.98 | 93 | 3.9995 | 0.108 | | 3.8211 | 4.0 | 125 | 3.6762 | 0.108 | | 3.5876 | 4.99 | 156 | 3.4586 | 0.152 | | 3.4453 | 5.98 | 187 | 3.3284 | 0.191 | | 3.313 | 6.98 | 218 | 3.2432 | 0.21 | | 3.2369 | 8.0 | 250 | 3.1993 | 0.223 | | 3.2286 | 8.99 | 281 | 3.1712 | 0.23 | | 3.1867 | 9.92 | 310 | 3.1584 | 0.26 | ### Framework versions - Transformers 4.38.0 - Pytorch 2.3.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0