File size: 2,068 Bytes
e2e6fe4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: wav2vec2-base_lr_4e-4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base_lr_4e-4
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0997
- Accuracy: 0.9625
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0004
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 1.6571 | 0.9851 | 33 | 1.3089 | 0.5679 |
| 0.9453 | 2.0 | 67 | 0.6596 | 0.7769 |
| 0.5682 | 2.9851 | 100 | 0.4865 | 0.8482 |
| 0.5507 | 4.0 | 134 | 0.4255 | 0.8575 |
| 0.4859 | 4.9851 | 167 | 0.2552 | 0.9044 |
| 0.3461 | 6.0 | 201 | 0.3066 | 0.8969 |
| 0.358 | 6.9851 | 234 | 0.1916 | 0.9269 |
| 0.2854 | 8.0 | 268 | 0.1589 | 0.9447 |
| 0.192 | 8.9851 | 301 | 0.1160 | 0.9550 |
| 0.1969 | 9.8507 | 330 | 0.0997 | 0.9625 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1
|