import torch from diffusers import DiffusionPipeline import tqdm from diffusers.models.unet_1d import UNet1DModel from diffusers.utils.dummy_pt_objects import DDPMScheduler class ValueGuidedDiffuserPipeline(DiffusionPipeline): def __init__(self, value_function: UNet1DModel, unet: UNet1DModel, scheduler: DDPMScheduler, env): super().__init__() self.value_function = value_function self.unet = unet self.scheduler = scheduler self.env = env self.data = env.get_dataset() self.means = dict((key, val.mean(axis=0)) for key, val in self.data.items()) self.stds = dict((key, val.std(axis=0)) for key, val in self.data.items()) self.device = self.unet.device self.state_dim = env.observation_space.shape[0] self.action_dim = env.action_space.shape[0] def normalize(self, x_in, key): return (x_in - self.means[key]) / self.stds[key] def de_normalize(self, x_in, key): return x_in * self.stds[key] + self.means[key] def to_torch(self, x_in): if type(x_in) is dict: return {k: self.to_torch(v) for k, v in x_in.items()} elif torch.is_tensor(x_in): return x_in.to(self.device) return torch.tensor(x_in, device=self.device) def reset_x0(self, x_in, cond, act_dim): for key, val in cond.items(): x_in[:, key, act_dim:] = val.clone() return x_in def run_diffusion(self, x, conditions, n_guide_steps, scale): batch_size = x.shape[0] y = None for i in tqdm.tqdm(self.scheduler.timesteps): # create batch of timesteps to pass into model timesteps = torch.full((batch_size,), i, device=self.device, dtype=torch.long) # 3. call the sample function for _ in range(n_guide_steps): with torch.enable_grad(): x.requires_grad_() y = self.value_function(x, timesteps).sample grad = torch.autograd.grad([y.sum()], [x])[0] posterior_variance = self.scheduler._get_variance(i) model_std = torch.exp(0.5 * posterior_variance) grad = model_std * grad grad[timesteps < 2] = 0 x = x.detach() x = x + scale * grad x = self.reset_x0(x, conditions, self.action_dim) # with torch.no_grad(): prev_x = self.unet(x.permute(0, 2, 1), timesteps).sample.permute(0, 2, 1) x = self.scheduler.step(prev_x, i, x, predict_epsilon=False)["prev_sample"] # 4. apply conditions to the trajectory x = self.reset_x0(x, conditions, self.action_dim) x = self.to_torch(x, device=self.device) # y = network(x, timesteps).sample return x, y def __call__(self, obs, batch_size=64, planning_horizon=20, n_guide_steps=2, scale=0.1): obs = self.normalize(obs, "observations") obs = obs[None].repeat(batch_size, axis=0) conditions = {0: self.to_torch(obs)} shape = (batch_size, planning_horizon, self.state_dim + self.action_dim) x1 = torch.randn(shape, device=self.device) x = self.reset_x0(x1, conditions, self.action_dim) x = self.to_torch(x) x, y = self.run_diffusion(x, conditions, n_guide_steps, scale) sorted_idx = y.argsort(0, descending=True).squeeze() sorted_values = x[sorted_idx] actions = sorted_values[:, :, : self.action_dim] actions = actions.detach().cpu().numpy() denorm_actions = self.de_normalize(actions, key="actions") # denorm_actions = denorm_actions[np.random.randint(config['n_samples']), 0] denorm_actions = denorm_actions[0, 0] return denorm_actions