File size: 3,857 Bytes
00f1d83 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
import torch
from diffusers import DiffusionPipeline
import tqdm
from diffusers.models.unet_1d import UNet1DModel
from diffusers.utils.dummy_pt_objects import DDPMScheduler
class ValueGuidedDiffuserPipeline(DiffusionPipeline):
def __init__(self, value_function: UNet1DModel, unet: UNet1DModel, scheduler: DDPMScheduler, env, *args, **kwargs):
super().__init__(*args, **kwargs)
self.value_function = value_function
self.unet = unet
self.scheduler = scheduler
self.env = env
self.data = env.get_dataset()
self.means = dict((key, val.mean(axis=0)) for key, val in self.data.items())
self.stds = dict((key, val.std(axis=0)) for key, val in self.data.items())
self.device = self.unet.device
self.state_dim = env.observation_space.shape[0]
self.action_dim = env.action_space.shape[0]
def normalize(self, x_in, key):
return (x_in - self.means[key]) / self.stds[key]
def de_normalize(self, x_in, key):
return x_in * self.stds[key] + self.means[key]
def to_torch(self, x_in):
if type(x_in) is dict:
return {k: self.to_torch(v) for k, v in x_in.items()}
elif torch.is_tensor(x_in):
return x_in.to(self.device)
return torch.tensor(x_in, device=self.device)
def reset_x0(self, x_in, cond, act_dim):
for key, val in cond.items():
x_in[:, key, act_dim:] = val.clone()
return x_in
def run_diffusion(self, x, conditions, n_guide_steps, scale):
batch_size = x.shape[0]
y = None
for i in tqdm.tqdm(self.scheduler.timesteps):
# create batch of timesteps to pass into model
timesteps = torch.full((batch_size,), i, device=self.device, dtype=torch.long)
# 3. call the sample function
for _ in range(n_guide_steps):
with torch.enable_grad():
x.requires_grad_()
y = self.value_function(x, timesteps).sample
grad = torch.autograd.grad([y.sum()], [x])[0]
posterior_variance = self.scheduler._get_variance(i)
model_std = torch.exp(0.5 * posterior_variance)
grad = model_std * grad
grad[timesteps < 2] = 0
x = x.detach()
x = x + scale * grad
x = self.reset_x0(x, conditions, self.action_dim)
# with torch.no_grad():
prev_x = self.unet(x.permute(0, 2, 1), timesteps).sample.permute(0, 2, 1)
x = self.scheduler.step(prev_x, i, x, predict_epsilon=False)["prev_sample"]
# 4. apply conditions to the trajectory
x = self.reset_x0(x, conditions, self.action_dim)
x = self.to_torch(x, device=self.device)
# y = network(x, timesteps).sample
return x, y
def __call__(self, obs, batch_size=64, planning_horizon=20, n_guide_steps=2, scale=0.1):
obs = self.normalize(obs, "observations")
obs = obs[None].repeat(batch_size, axis=0)
conditions = {0: self.to_torch(obs)}
shape = (batch_size, planning_horizon, self.state_dim + self.action_dim)
x1 = torch.randn(shape, device=self.device)
x = self.reset_x0(x1, conditions, self.action_dim)
x = self.to_torch(x)
x, y = self.run_diffusion(x, conditions, n_guide_steps, scale)
sorted_idx = y.argsort(0, descending=True).squeeze()
sorted_values = x[sorted_idx]
actions = sorted_values[:, :, : self.action_dim]
actions = actions.detach().cpu().numpy()
denorm_actions = self.de_normalize(actions, key="actions")
# denorm_actions = denorm_actions[np.random.randint(config['n_samples']), 0]
denorm_actions = denorm_actions[0, 0]
return denorm_actions
|