--- language: en tags: - augmentation license: apache-2.0 datasets: - C4 --- # SEGA-large model SEGA: SkEtch-based Generative Augmentation SEGA is a general text augmentation model that can be used for data augmentation for various NLP tasks (including sentiment analysis, topic classification, NER, and QA). SEGA uses an encoder-decoder structure (based on the BART architecture) and is pre-trained on the C4-realnewslike corpus. - Paper: [this paper](to_be_added) - Github: [this repository](to_be_added). ## Model description ## Model variations | Model | #params | Language | |------------------------|--------------------------------|-------| | [`sega-large`]() | xM | English | | [`sega-base`]() | xM | English | | [`sega-small`]() | xM | English | | [`sega-large-chinese`]() | xM | Chinese | | [`sega-base-chinese`]() | xM | Chinese | | [`sega-small-chinese`]() | xM | Chinese | ## Intended uses & limitations ### How to use ### Limitations and bias ## Training data ## Training procedure ### Preprocessing ### Pretraining ## Evaluation results ### BibTeX entry and citation info