beyond commited on
Commit
af4ba34
1 Parent(s): b61de2a

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +120 -0
README.md ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ tags:
4
+ - SEGA
5
+ - data augmentation
6
+ - keywords-to-text generation
7
+ - sketch-to-text generation
8
+ license: apache-2.0
9
+ datasets:
10
+ - c4
11
+
12
+
13
+ widget:
14
+ - text: "<mask> Conference on Empirical Methods <mask> submission of research papers <mask> Deep Learning <mask>"
15
+ example_title: "Example 1"
16
+ - text: "<mask> machine learning <mask> my research interest <mask> data science <mask>"
17
+ example_title: "Example 2"
18
+ - text: "<mask> play basketball <mask> a strong team <mask> Shanghai University of Finance and Economics <mask> last Sunday <mask>"
19
+ example_title: "Example 3"
20
+ - text: "Good news: <mask> the European Union <mask> month by EU <mask> Farm Commissioner Franz <mask>"
21
+ example_title: "Example with a prompt 1"
22
+ - text: "Bad news: <mask> the European Union <mask> month by EU <mask> Farm Commissioner Franz <mask>"
23
+ example_title: "Example with a prompt 2"
24
+
25
+ inference:
26
+ parameters:
27
+ max_length: 200
28
+ num_beams: 3
29
+ do_sample: True
30
+ ---
31
+
32
+ # SEGA-large model
33
+
34
+ **SEGA: SkEtch-based Generative Augmentation** \
35
+ **基于草稿的生成式增强模型**
36
+
37
+ **SEGA** is a **general text augmentation model** that can be used for data augmentation for **various NLP tasks** (including sentiment analysis, topic classification, NER, and QA). SEGA uses an encoder-decoder structure (based on the BART architecture) and is pre-trained on the `C4-realnewslike` corpus.
38
+
39
+
40
+ ![sega-illustration](https://cdn.jsdelivr.net/gh/beyondguo/mdnice_pictures/typora/sega-main-illustration.png)
41
+
42
+ - Paper: [coming soon](to_be_added)
43
+ - GitHub: [SEGA](https://github.com/beyondguo/SEGA).
44
+
45
+ **SEGA** is able to write complete paragraphs given a *sketch*, which can be composed of:
46
+ - keywords /key-phrases, like "––NLP––AI––computer––science––"
47
+ - spans, like "Conference on Empirical Methods––submission of research papers––"
48
+ - sentences, like "I really like machine learning––I work at Google since last year––"
49
+ - or mixup~
50
+
51
+
52
+ **Model variations:**
53
+ | Model | #params | Language | comment|
54
+ |------------------------|--------------------------------|-------|---------|
55
+ | [`sega-large`](https://huggingface.co/beyond/sega-large) | 406M | English | The version used in paper |
56
+ | [`sega-large-k2t`](https://huggingface.co/beyond/sega-large-k2t) | 406M | English | keywords-to-text |
57
+ | [`sega-base`](https://huggingface.co/beyond/sega-base) | 139M | English | smaller version |
58
+ | [`sega-base-ps`](https://huggingface.co/beyond/sega-base) | 139M | English | pre-trained both in paragraphs and short sentences |
59
+ | [`sega-base-chinese`](https://huggingface.co/beyond/sega-base-chinese) | 116M | 中文 | 在一千万纯净中文段落上预训练|
60
+
61
+ ---
62
+
63
+ ### How to use
64
+ #### 1. If you want to generate sentences given a **sketch**
65
+ ```python
66
+ from transformers import pipeline
67
+ # 1. load the model with the huggingface `pipeline`
68
+ sega = pipeline("text2text-generation", model='beyond/sega-large', device=0)
69
+ # 2. provide a sketch (joint by <mask> tokens)
70
+ sketch = "<mask> Conference on Empirical Methods <mask> submission of research papers <mask> Deep Learning <mask>"
71
+ # 3. just do it!
72
+ generated_text = sega(sketch, num_beams=3, do_sample=True, max_length=200)[0]['generated_text']
73
+ print(generated_text)
74
+ ```
75
+ Output:
76
+ ```shell
77
+ 'The Conference on Empirical Methods welcomes the submission of research papers. Abstracts should be in the form of a paper or presentation. Please submit abstracts to the following email address: eemml.stanford.edu. The conference will be held at Stanford University on April 1618, 2019. The theme of the conference is Deep Learning.'
78
+ ```
79
+
80
+ #### 2. If you want to do **data augmentation** to generate new training samples
81
+ Please Check our Github page: [github.com/beyondguo/SEGA](https://github.com/beyondguo/SEGA), where we provide ready-to-run scripts for data augmentation for text classification/NER/MRC tasks.
82
+
83
+ ---
84
+
85
+ ## SEGA as A Strong Data Augmentation Tool:
86
+ - Setting: Low-resource setting, where only n={50,100,200,500,1000} labeled samples are available for training. The below results are the average of all training sizes.
87
+ - Datasets: [HuffPost](https://huggingface.co/datasets/khalidalt/HuffPost), [BBC](https://huggingface.co/datasets/SetFit/bbc-news), [SST2](https://huggingface.co/datasets/glue), [IMDB](https://huggingface.co/datasets/imdb), [Yahoo](https://huggingface.co/datasets/yahoo_answers_topics), [20NG](https://huggingface.co/datasets/newsgroup).
88
+ - Base classifier: [DistilBERT](https://huggingface.co/distilbert-base-cased)
89
+
90
+
91
+ In-distribution (ID) evaluations:
92
+ | Method | Huff | BBC | Yahoo | 20NG | IMDB | SST2 | avg. |
93
+ |:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|
94
+ | none | 79.17 | **96.16** | 45.77 | 46.67 | 77.87 | 76.67 | 70.39 |
95
+ | EDA | 79.20 | 95.11 | 45.10 | 46.15 | 77.88 | 75.52 | 69.83 |
96
+ | BackT | 80.48 | 95.28 | 46.10 | 46.61 | 78.35 | 76.96 | 70.63 |
97
+ | MLM | 80.04 | 96.07 | 45.35 | 46.53 | 75.73 | 76.61 | 70.06 |
98
+ | C-MLM | 80.60 | 96.13 | 45.40 | 46.36 | 77.31 | 76.91 | 70.45 |
99
+ | LAMBADA | 81.46 | 93.74 | 50.49 | 47.72 | 78.22 | 78.31 | 71.66 |
100
+ | STA | 80.74 | 95.64 | 46.96 | 47.27 | 77.88 | 77.80 | 71.05 |
101
+ | **SEGA** | 81.43 | 95.74 | 49.60 | 50.38 | **80.16** | 78.82 | 72.68 |
102
+ | **SEGA-f** | **81.82** | 95.99 | **50.42** | **50.81** | 79.40 | **80.57** | **73.17** |
103
+
104
+ Out-of-distribution (OOD) evaluations:
105
+ | | Huff->BBC | BBC->Huff | IMDB->SST2 | SST2->IMDB | avg. |
106
+ |------------|:----------:|:----------:|:----------:|:----------:|:----------:|
107
+ | none | 62.32 | 62.00 | 74.37 | 73.11 | 67.95 |
108
+ | EDA | 67.48 | 58.92 | 75.83 | 69.42 | 67.91 |
109
+ | BackT | 67.75 | 63.10 | 75.91 | 72.19 | 69.74 |
110
+ | MLM | 66.80 | 65.39 | 73.66 | 73.06 | 69.73 |
111
+ | C-MLM | 64.94 | **67.80** | 74.98 | 71.78 | 69.87 |
112
+ | LAMBADA | 68.57 | 52.79 | 75.24 | 76.04 | 68.16 |
113
+ | STA | 69.31 | 64.82 | 74.72 | 73.62 | 70.61 |
114
+ | **SEGA** | 74.87 | 66.85 | 76.02 | 74.76 | 73.13 |
115
+ | **SEGA-f** | **76.18** | 66.89 | **77.45** | **80.36** | **75.22** |
116
+
117
+
118
+
119
+ ### BibTeX entry and citation info
120
+