--- license: mit base_model: Davlan/xlm-roberta-base-finetuned-arabic tags: - generated_from_keras_callback model-index: - name: betteib/xlm-tn-20epochs results: [] --- # betteib/xlm-tn-20epochs This model is a fine-tuned version of [Davlan/xlm-roberta-base-finetuned-arabic](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-arabic) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 6.7555 - Train Accuracy: 0.0291 - Validation Loss: 6.7420 - Validation Accuracy: 0.0281 - Epoch: 12 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 0.0001, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 0.0001, 'decay_steps': 18848, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 992, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.001} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 9.7281 | 0.0031 | 9.4281 | 0.0045 | 0 | | 9.2184 | 0.0051 | 8.9814 | 0.0060 | 1 | | 8.7336 | 0.0068 | 8.4005 | 0.0084 | 2 | | 8.1287 | 0.0109 | 7.7969 | 0.0133 | 3 | | 7.6665 | 0.0159 | 7.4295 | 0.0222 | 4 | | 7.3938 | 0.0233 | 7.1783 | 0.0289 | 5 | | 7.2079 | 0.0287 | 7.0257 | 0.0286 | 6 | | 7.0785 | 0.0292 | 6.9028 | 0.0291 | 7 | | 6.9777 | 0.0294 | 6.8739 | 0.0287 | 8 | | 6.9034 | 0.0292 | 6.8083 | 0.0281 | 9 | | 6.8549 | 0.0292 | 6.8099 | 0.0280 | 10 | | 6.7978 | 0.0292 | 6.7450 | 0.0286 | 11 | | 6.7555 | 0.0291 | 6.7420 | 0.0281 | 12 | ### Framework versions - Transformers 4.31.0 - TensorFlow 2.12.0 - Datasets 2.19.1 - Tokenizers 0.13.3