--- license: mit base_model: Davlan/xlm-roberta-base-finetuned-arabic tags: - generated_from_keras_callback model-index: - name: betteib/xlm-tn-20epochs-lr results: [] --- # betteib/xlm-tn-20epochs-lr This model is a fine-tuned version of [Davlan/xlm-roberta-base-finetuned-arabic](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-arabic) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 7.0724 - Train Accuracy: 0.0291 - Validation Loss: 6.9350 - Validation Accuracy: 0.0286 - Epoch: 5 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 0.0001, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 0.0001, 'decay_steps': 4464, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 496, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.03} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 9.6176 | 0.0035 | 9.2319 | 0.0048 | 0 | | 8.9356 | 0.0059 | 8.5303 | 0.0071 | 1 | | 8.1494 | 0.0100 | 7.7161 | 0.0137 | 2 | | 7.5554 | 0.0180 | 7.2709 | 0.0281 | 3 | | 7.2561 | 0.0273 | 7.0588 | 0.0289 | 4 | | 7.0724 | 0.0291 | 6.9350 | 0.0286 | 5 | ### Framework versions - Transformers 4.31.0 - TensorFlow 2.12.0 - Datasets 2.19.1 - Tokenizers 0.13.3