--- library_name: peft license: llama3.2 base_model: unsloth/Llama-3.2-1B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: miner_id_1_383a850e-bb15-45a2-8f4b-fc96eb001a74_1729712965 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Llama-3.2-1B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - path: mhenrichsen/alpaca_2k_test type: alpaca debug: null deepspeed: null early_stopping_patience: 10 eval_max_new_tokens: 128 eval_steps: 20 eval_table_size: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: besimray/miner_id_1_383a850e-bb15-45a2-8f4b-fc96eb001a74_1729712965 hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 10000 micro_batch_size: 10 mlflow_experiment_name: mhenrichsen/alpaca_2k_test model_type: LlamaForCausalLM num_epochs: 100 optimizer: adamw_bnb_8bit output_dir: miner_id_besimray pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 20 save_strategy: steps sequence_len: 4096 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false val_set_size: 0.05 wandb_entity: besimray24-rayon wandb_mode: online wandb_project: Public_TuningSN wandb_run: miner_id_24 wandb_runid: 383a850e-bb15-45a2-8f4b-fc96eb001a74 warmup_steps: 10 weight_decay: 0.01 xformers_attention: null ```

# miner_id_1_383a850e-bb15-45a2-8f4b-fc96eb001a74_1729712965 This model is a fine-tuned version of [unsloth/Llama-3.2-1B-Instruct](https://huggingface.co/unsloth/Llama-3.2-1B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5010 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 40 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 4750 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.2983 | 0.0211 | 1 | 1.2586 | | 1.3601 | 0.4211 | 20 | 1.1757 | | 1.2034 | 0.8421 | 40 | 1.1567 | | 1.1302 | 1.2632 | 60 | 1.1534 | | 1.0958 | 1.6842 | 80 | 1.1512 | | 1.0285 | 2.1053 | 100 | 1.1653 | | 1.1265 | 2.5263 | 120 | 1.1785 | | 1.0215 | 2.9474 | 140 | 1.1921 | | 0.8495 | 3.3684 | 160 | 1.2673 | | 0.901 | 3.7895 | 180 | 1.2611 | | 0.7058 | 4.2105 | 200 | 1.3737 | | 0.7428 | 4.6316 | 220 | 1.3824 | | 0.4866 | 5.0526 | 240 | 1.4475 | | 0.5298 | 5.4737 | 260 | 1.5484 | | 0.5671 | 5.8947 | 280 | 1.5010 | ### Framework versions - PEFT 0.13.2 - Transformers 4.45.2 - Pytorch 2.4.1+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1