--- license: apache-2.0 base_model: google/mt5-small tags: - summarization - generated_from_trainer datasets: - xlsum metrics: - rouge model-index: - name: mt5-small-finetuned-summary results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: xlsum type: xlsum config: french split: validation args: french metrics: - name: Rouge1 type: rouge value: 22.1761 --- # mt5-small-finetuned-summary This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the xlsum dataset. It achieves the following results on the evaluation set: - Loss: 2.2770 - Rouge1: 22.1761 - Rouge2: 8.0115 - Rougel: 18.8245 - Rougelsum: 18.8574 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:| | 4.7862 | 1.0 | 1085 | 2.5085 | 21.2935 | 7.4006 | 18.0791 | 18.0868 | | 3.2212 | 2.0 | 2170 | 2.4069 | 21.968 | 7.9139 | 18.5785 | 18.6248 | | 3.0201 | 3.0 | 3255 | 2.3489 | 21.8529 | 7.9865 | 18.6842 | 18.7074 | | 2.9085 | 4.0 | 4340 | 2.3173 | 22.1605 | 8.2646 | 18.8284 | 18.838 | | 2.8285 | 5.0 | 5425 | 2.2965 | 22.0612 | 8.0447 | 18.7454 | 18.7784 | | 2.7727 | 6.0 | 6510 | 2.2899 | 22.1416 | 7.9747 | 18.7622 | 18.8029 | | 2.7311 | 7.0 | 7595 | 2.2797 | 22.2979 | 8.1382 | 18.9798 | 19.035 | | 2.7171 | 8.0 | 8680 | 2.2770 | 22.1761 | 8.0115 | 18.8245 | 18.8574 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0