Update README
Browse files
README.md
CHANGED
@@ -1,3 +1,106 @@
|
|
1 |
---
|
2 |
license: mit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
+
datasets:
|
4 |
+
- glaiveai/glaive-code-assistant-v2
|
5 |
+
- TokenBender/code_instructions_122k_alpaca_style
|
6 |
+
language:
|
7 |
+
- en
|
8 |
+
metrics:
|
9 |
+
- code_eval
|
10 |
+
pipeline_tag: text-generation
|
11 |
+
tags:
|
12 |
+
- code
|
13 |
+
- text-generation-inference
|
14 |
---
|
15 |
+
|
16 |
+
|
17 |
+
|
18 |
+
<p align="center">
|
19 |
+
<img width="700px" alt="DeepSeek Coder" src="https://cdn-uploads.huggingface.co/production/uploads/64b566ab04fa6584c03b5247/5COagfF6EwrV4utZJ-ClI.png">
|
20 |
+
</p>
|
21 |
+
<hr>
|
22 |
+
|
23 |
+
|
24 |
+
## 1. Introduction of CodeNinja
|
25 |
+
|
26 |
+
CodeNinja is a fine tuned version of the excellent model [openchat/openchat-3.5-1210](https://huggingface.co/openchat/openchat-3.5-1210). It is a 7B model that was fine tuned using Supervised Fine Tuning in 2 instructions datasets containing in total more than 400 000 code instructions.
|
27 |
+
|
28 |
+
The model is quite good for coding tasks and it's goal is to be a coding assistant that you can use daily.
|
29 |
+
|
30 |
+
The quantized versions can be found here: [beowolx/CodeNinja-1.0-OpenChat-7B-GGUF](https://huggingface.co/beowolx/CodeNinja-1.0-OpenChat-7B-GGUF).
|
31 |
+
|
32 |
+
The model performs very good in a serie of different tasks.
|
33 |
+
|
34 |
+
- **Massive Training Data**: Fine-tuned using the datasets [glaiveai/glaive-code-assistant-v2](https://huggingface.co/datasets/glaiveai/glaive-code-assistant-v2) and [TokenBender/code_instructions_122k_alpaca_style](https://huggingface.co/datasets/TokenBender/code_instructions_122k_alpaca_style) it contains around 400 000 code instructions in different programming languages such as Python, C, C++, Rust, Java, JavaScript and etc.
|
35 |
+
|
36 |
+
- **Highly Flexible & Scalable**: Offered in model sizes of 7B, enabling users to run it locally.
|
37 |
+
|
38 |
+
- **Superior Model Performance**: State-of-the-art performance among publicly available code models on HumanEval.
|
39 |
+
|
40 |
+
- **Advanced Code Completion Capabilities**: A context window size of 8192 supporting project-level code completion.
|
41 |
+
|
42 |
+
## 2. Prompt Format
|
43 |
+
CodeNinja uses the same prompt format than OpenChat 3.5 so you will need to use it to get good results.
|
44 |
+
|
45 |
+
The prompt format looks like this:
|
46 |
+
|
47 |
+
```
|
48 |
+
GPT4 Correct User: Hello<|end_of_turn|>GPT4 Correct Assistant: Hi<|end_of_turn|>GPT4 Correct User: How are you today?<|end_of_turn|>GPT4 Correct Assistant:
|
49 |
+
```
|
50 |
+
🚨 Notice: Remember to set `<|end_of_turn|>` as end of generation token.
|
51 |
+
|
52 |
+
**You must use this prompt format to get good results**
|
53 |
+
|
54 |
+
## 3. How to Use
|
55 |
+
|
56 |
+
#### Using LM Studio
|
57 |
+
The easiest way to start using the model is to download one of the [quantized](https://huggingface.co/beowolx/CodeNinja-1.0-OpenChat-7B-GGUF) versions
|
58 |
+
using [LM Studio](https://lmstudio.ai/).
|
59 |
+
|
60 |
+
You then need to make sure that you are using the "OpenChat" preset that contain the prompt format mentioned above already set.
|
61 |
+
|
62 |
+
If you want, you can get the preset from this [gist](https://gist.github.com/beowolx/b219466681c02ff67baf8f313a3ad817).
|
63 |
+
|
64 |
+
#### Using the transformers library
|
65 |
+
|
66 |
+
```python
|
67 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
68 |
+
import torch
|
69 |
+
|
70 |
+
# Initialize the model
|
71 |
+
model_path = "beowolx/CodeNinja-1.0-OpenChat-7B"
|
72 |
+
model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto")
|
73 |
+
# Import openchat tokenizer
|
74 |
+
tokenizer = AutoTokenizer.from_pretrained("openchat/openchat-3.5-1210", use_fast=True)
|
75 |
+
|
76 |
+
def generate_one_completion(prompt: str):
|
77 |
+
messages = [
|
78 |
+
{"role": "user", "content": prompt},
|
79 |
+
{"role": "assistant", "content": ""} # Placeholder for the model's response
|
80 |
+
]
|
81 |
+
|
82 |
+
# Apply the chat template to get the list of token IDs
|
83 |
+
input_ids = tokenizer.apply_chat_template(messages, add_generation_prompt=True)
|
84 |
+
|
85 |
+
# Generate completion
|
86 |
+
generate_ids = model.generate(
|
87 |
+
torch.tensor([input_ids]).to("cuda"), # Convert list to tensor and send to GPU
|
88 |
+
max_length=256,
|
89 |
+
pad_token_id=tokenizer.pad_token_id,
|
90 |
+
eos_token_id=tokenizer.eos_token_id
|
91 |
+
)
|
92 |
+
|
93 |
+
# Decode and clean up the completion
|
94 |
+
completion = tokenizer.decode(generate_ids[0], skip_special_tokens=True)
|
95 |
+
completion = completion.split("\n\n\n")[0].strip()
|
96 |
+
|
97 |
+
return completion
|
98 |
+
```
|
99 |
+
|
100 |
+
## 4. License
|
101 |
+
This code repository is licensed under the MIT License. The use of CodeNinja model is subject to the Model License.
|
102 |
+
|
103 |
+
|
104 |
+
## 5. Contact
|
105 |
+
|
106 |
+
If you have any questions, please raise an issue here.
|