File size: 1,876 Bytes
448dd84
 
d67db95
448dd84
 
2645a76
 
448dd84
 
 
 
 
 
 
 
 
 
d67db95
2645a76
 
 
448dd84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2645a76
448dd84
 
 
 
 
 
2645a76
30bad97
 
 
2645a76
 
 
 
 
 
 
 
 
 
 
30bad97
448dd84
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: wav2vec2-base-nsc-demo-4
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-base-nsc-demo-4

This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0598
- Wer: 0.5177

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 200

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 2.943         | 4.55  | 100  | 2.9614          | 1.0    |
| 2.909         | 9.09  | 200  | 2.9454          | 1.0    |
| 2.8673        | 13.64 | 300  | 2.9148          | 1.0    |
| 2.3216        | 18.18 | 400  | 1.9129          | 0.9218 |
| 0.8129        | 22.73 | 500  | 1.0840          | 0.6480 |
| 0.3488        | 27.27 | 600  | 1.0021          | 0.5721 |
| 0.2166        | 31.82 | 700  | 1.0291          | 0.5568 |
| 0.153         | 36.36 | 800  | 1.0672          | 0.5394 |
| 0.1186        | 40.91 | 900  | 1.0598          | 0.5177 |


### Framework versions

- Transformers 4.33.0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3