File size: 1,545 Bytes
637c569
2d7da4f
637c569
2d7da4f
 
 
 
 
 
 
 
 
637c569
 
2d7da4f
 
637c569
2d7da4f
637c569
2d7da4f
 
 
637c569
2d7da4f
637c569
2d7da4f
637c569
2d7da4f
637c569
2d7da4f
637c569
2d7da4f
637c569
2d7da4f
637c569
2d7da4f
637c569
2d7da4f
637c569
2d7da4f
 
 
 
 
 
 
 
 
 
 
 
637c569
2d7da4f
637c569
2d7da4f
 
 
 
637c569
 
 
 
2d7da4f
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
license: mit
base_model: HuggingFaceH4/zephyr-7b-beta
tags:
- trl
- sft
- generated_from_trainer
datasets:
- generator
model-index:
- name: wandb-test-zephyr-qa
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wandb-test-zephyr-qa

This model is a fine-tuned version of [HuggingFaceH4/zephyr-7b-beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6194

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- training_steps: 15
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log        | 0.92  | 10   | 0.6339          |
| No log        | 1.38  | 15   | 0.6194          |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.14.7
- Tokenizers 0.14.1