Update README.md
Browse files
README.md
CHANGED
@@ -1,43 +1,307 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
datasets:
|
|
|
4 |
- liuhaotian/LLaVA-Pretrain
|
5 |
- liuhaotian/LLaVA-Instruct-150K
|
6 |
language:
|
7 |
- en
|
8 |
- zh
|
9 |
-
|
|
|
|
|
|
|
|
|
10 |
---
|
|
|
11 |
|
12 |
-
|
13 |
-
We present TinyLLaVA, a small vision-language chatbot (1.4B) that reaches comparable performances with contemporary vision language models on common benchmarks, using less parameters.
|
14 |
-
TinyLLaVA was trained by finetuning [TinyLlama](https://huggingface.co/PY007/TinyLlama-1.1B-Chat-v0.3) on the [LLaVA-1.5](https://github.com/haotian-liu/LLaVA) dataset, following the training recipe of [LLaVA-1.5](https://github.com/haotian-liu/LLaVA). For more details, please refer to the [LLaVA-1.5 paper](https://arxiv.org/abs/2310.03744).
|
15 |
|
|
|
16 |
|
17 |
-
##
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
|
|
31 |
|
|
|
32 |
|
|
|
33 |
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
|
37 |
-
##
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
-
#### - Transformers Version
|
40 |
-
Make sure to have `transformers >= 4.35.3`.
|
41 |
|
42 |
#### - Prompt Template
|
43 |
The model supports multi-image and multi-prompt generation. When using the model, make sure to follow the correct prompt template (`USER: <image>xxx\nASSISTANT:`), where `<image>` token is a place-holding special token for image embeddings.
|
@@ -83,9 +347,6 @@ output = model.generate(**inputs, max_new_tokens=200, do_sample=False)
|
|
83 |
print(processor.decode(output[0][2:], skip_special_tokens=True))
|
84 |
```
|
85 |
|
86 |
-
## Contact
|
87 |
-
This model was trained by [Baichuan Zhou](https://baichuanzhou.github.io/), from Beihang Univerisity, under the supervision of [Prof. Lei Huang](https://huangleibuaa.github.io/).
|
88 |
-
|
89 |
## ✏ Citation
|
90 |
|
91 |
If you find our paper and code useful in your research, please consider giving a star :star: and citation :pencil:.
|
@@ -99,4 +360,10 @@ If you find our paper and code useful in your research, please consider giving a
|
|
99 |
archivePrefix={arXiv},
|
100 |
primaryClass={cs.LG}
|
101 |
}
|
102 |
-
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
datasets:
|
4 |
+
- Lin-Chen/ShareGPT4V
|
5 |
- liuhaotian/LLaVA-Pretrain
|
6 |
- liuhaotian/LLaVA-Instruct-150K
|
7 |
language:
|
8 |
- en
|
9 |
- zh
|
10 |
+
tags:
|
11 |
+
- llava
|
12 |
+
- vision-language
|
13 |
+
- llm
|
14 |
+
- lmm
|
15 |
---
|
16 |
+
<h2 align="center"> <a href="https://arxiv.org/abs/2402.14289">TinyLLaVA: A Framework of Small-scale Large Multimodal Models</a>
|
17 |
|
18 |
+
<h5 align="center">
|
|
|
|
|
19 |
|
20 |
+
[![github](https://img.shields.io/badge/GitHub-TinyLLaVA-blue)](https://github.com/DLCV-BUAA/TinyLLaVABench) [![arXiv](https://img.shields.io/badge/Arxiv-2402.14289-b31b1b.svg?logo=arXiv)](https://arxiv.org/abs/2402.14289) [![License](https://img.shields.io/badge/License-Apache%202.0-yellow)](https://github.com/PKU-YuanGroup/MoE-LLaVA/blob/main/LICENSE)
|
21 |
|
22 |
+
## 🎉 News
|
23 |
+
* **[2024.03.10]** base recipe out!
|
24 |
+
* **[2024.03.10]** Finetune scripts out!
|
25 |
+
* **[2024.02.25]** Update evaluation scripts and docs!
|
26 |
+
* **[2024.02.25]** Data descriptions out. Release TinyLLaVA-1.5B and TinyLLaVA-2.0B!
|
27 |
+
* **[2024.02.24]** Example code on inference and model loading added!
|
28 |
+
* **[2024.02.23]** Evaluation code and scripts released!
|
29 |
+
* **[2024.02.21]** Creating the [TinyLLaVABench](https://github.com/DLCV-BUAA/TinyLLavaBench) repository on GitHub!
|
30 |
+
* **[2024.02.21]** Our paper: [TinyLLaVA: A Framework of Small-scale Large Multimodal Models](https://arxiv.org/abs/2402.14289) is out!
|
31 |
+
* **[2024.01.11]** Our fist model [TinyLLaVA-1.4B](https://huggingface.co/bczhou/tiny-llava-v1-hf) is out!
|
32 |
|
33 |
+
## ⌛ TODO
|
34 |
+
- [ ] Add support for Ollama and llama.cpp.
|
35 |
+
- [x] Developers' guide / How to build demo locally.
|
36 |
+
- [x] Training and custom finetuning docs.
|
37 |
+
- [x] Model Zoo descriptions.
|
38 |
+
- [x] Examples and inference.
|
39 |
+
- [x] Release code for training.
|
40 |
+
- [x] Add descriptions for evaluation.
|
41 |
+
- [x] Add descriptions for data preparation.
|
42 |
+
- [x] Release TinyLLaVA-1.5B and TinyLLaVA-2.0B.
|
43 |
+
- [x] Release TinyLLaVA-3.1B.
|
44 |
+
- [x] Release the evaluation code and weights today(2024.2.23).
|
45 |
+
### 🔥 High performance, but with fewer parameters
|
46 |
|
47 |
+
- Our best model, TinyLLaVA-3.1B, achieves better overall performance against existing 7B models such as LLaVA-1.5 and Qwen-VL.
|
48 |
|
49 |
+
## Contents
|
50 |
|
51 |
+
- [Install](#x1f527-requirements-and-installation)
|
52 |
+
- [Model Zoo](#x1f433-model-zoo)
|
53 |
+
- [Demo](#Demo)
|
54 |
+
- [Quick Start](#x1f527-quick-start)
|
55 |
+
- [Run Inference](#x1f527-run-inference)
|
56 |
+
- [Evaluation](#evaluation)
|
57 |
+
- [Data](#data-preparation)
|
58 |
+
- [Train](#train)
|
59 |
+
- [Custom Finetune](#custom-finetune)
|
60 |
|
61 |
|
62 |
+
## 🔧 Requirements and Installation
|
63 |
+
|
64 |
+
We recommend the requirements as follows.
|
65 |
+
|
66 |
+
1. Clone this repository and navigate to LLaVA folder
|
67 |
+
```bash
|
68 |
+
git clone https://github.com/DLCV-BUAA/TinyLLaVABench.git
|
69 |
+
cd TinyLLaVABench
|
70 |
+
```
|
71 |
+
|
72 |
+
2. Install Package
|
73 |
+
```Shell
|
74 |
+
conda create -n tinyllava python=3.10 -y
|
75 |
+
conda activate tinyllava
|
76 |
+
pip install --upgrade pip # enable PEP 660 support
|
77 |
+
pip install -e .
|
78 |
+
```
|
79 |
+
|
80 |
+
3. Install additional packages for training cases
|
81 |
+
```Shell
|
82 |
+
pip install -e ".[train]"
|
83 |
+
pip install flash-attn --no-build-isolation
|
84 |
+
```
|
85 |
+
### Upgrade to the latest code base
|
86 |
+
|
87 |
+
```Shell
|
88 |
+
git pull
|
89 |
+
pip install -e .
|
90 |
+
|
91 |
+
# if you see some import errors when you upgrade, please try running the command below (without #)
|
92 |
+
# pip install flash-attn --no-build-isolation --no-cache-dir
|
93 |
+
```
|
94 |
+
|
95 |
+
## 🐳 Model Zoo
|
96 |
+
### Legacy Model
|
97 |
+
- [tiny-llava-hf](https://huggingface.co/bczhou/tiny-llava-v1-hf)
|
98 |
+
|
99 |
+
### Pretrained Models
|
100 |
+
- [TinyLLaVA-3.1B](https://huggingface.co/bczhou/TinyLLaVA-3.1B)
|
101 |
+
- [TinyLLaVA-2.0B](https://huggingface.co/bczhou/TinyLLaVA-2.0B)
|
102 |
+
- [TinyLLaVA-1.5B](https://huggingface.co/bczhou/TinyLLaVA-1.5B)
|
103 |
+
|
104 |
+
### Model Details
|
105 |
+
| Name | LLM | Checkpoint | LLaVA-Bench-Wild | MME | MMBench | MM-Vet | SQA-image | VQA-v2 | GQA | TextVQA |
|
106 |
+
|---------------|-------------------|------------------------------------------------|------------------|----------|---------|--------|-----------|--------|-------|---------|
|
107 |
+
| TinyLLaVA-3.1B | Phi-2 | [TinyLLaVA-3.1B](https://huggingface.co/bczhou/TinyLLaVA-3.1B) | 75.8 | 1464.9 | 66.9 | 32.0 | 69.1 | 79.9 | 62.0 | 59.1 |
|
108 |
+
| TinyLLaVA-2.0B | StableLM-2-1.6B | [TinyLLaVA-2.0B](https://huggingface.co/bczhou/TinyLLaVA-2.0B) | 66.4 | 1433.8 | 63.3 | 32.6 | 64.7 | 78.9 | 61.9 | 56.4 |
|
109 |
+
| TinyLLaVA-1.5B | TinyLlama | [TinyLLaVA-1.5B](https://huggingface.co/bczhou/TinyLLaVA-1.5B) | 60.8 | 1276.5 | 55.2 | 25.8 | 60.3 | 76.9 | 60.3 | 51.7 |
|
110 |
+
|
111 |
+
|
112 |
+
## Demo
|
113 |
+
|
114 |
+
### Gradio Web Demo
|
115 |
+
|
116 |
+
Launch a local web demo by running:
|
117 |
+
```shell
|
118 |
+
python tinyllava/serve/app.py --model-path bczhou/TinyLLaVA-3.1B --model-name TinyLLaVA-3.1B
|
119 |
+
```
|
120 |
+
|
121 |
+
### CLI Inference
|
122 |
+
|
123 |
+
We also support running inference with CLI. To use our model, run:
|
124 |
+
```shell
|
125 |
+
python -m tinyllava.serve.cli \
|
126 |
+
--model-path bczhou/TinyLLaVA-3.1B \
|
127 |
+
--image-file "./tinyllava/serve/examples/extreme_ironing.jpg"
|
128 |
+
```
|
129 |
+
|
130 |
+
|
131 |
+
## 🔧 Quick Start
|
132 |
+
|
133 |
+
<details>
|
134 |
+
<summary>Load model</summary>
|
135 |
+
|
136 |
+
```Python
|
137 |
+
from tinyllava.model.builder import load_pretrained_model
|
138 |
+
from tinyllava.mm_utils import get_model_name_from_path
|
139 |
+
from tinyllava.eval.run_tiny_llava import eval_model
|
140 |
+
|
141 |
+
model_path = "bczhou/TinyLLaVA-3.1B"
|
142 |
+
|
143 |
+
tokenizer, model, image_processor, context_len = load_pretrained_model(
|
144 |
+
model_path=model_path,
|
145 |
+
model_base=None,
|
146 |
+
model_name=get_model_name_from_path(model_path)
|
147 |
+
)
|
148 |
+
```
|
149 |
+
</details>
|
150 |
+
|
151 |
+
## 🔧 Run Inference
|
152 |
+
Here's an example of running inference with [TinyLLaVA-3.1B](https://huggingface.co/bczhou/TinyLLaVA-3.1B)
|
153 |
+
<details>
|
154 |
+
<summary>Run Inference</summary>
|
155 |
+
|
156 |
+
```Python
|
157 |
+
from tinyllava.model.builder import load_pretrained_model
|
158 |
+
from tinyllava.mm_utils import get_model_name_from_path
|
159 |
+
from tinyllava.eval.run_tiny_llava import eval_model
|
160 |
+
|
161 |
+
model_path = "bczhou/TinyLLaVA-3.1B"
|
162 |
+
prompt = "What are the things I should be cautious about when I visit here?"
|
163 |
+
image_file = "https://llava-vl.github.io/static/images/view.jpg"
|
164 |
+
|
165 |
+
args = type('Args', (), {
|
166 |
+
"model_path": model_path,
|
167 |
+
"model_base": None,
|
168 |
+
"model_name": get_model_name_from_path(model_path),
|
169 |
+
"query": prompt,
|
170 |
+
"conv_mode": "phi",
|
171 |
+
"image_file": image_file,
|
172 |
+
"sep": ",",
|
173 |
+
"temperature": 0,
|
174 |
+
"top_p": None,
|
175 |
+
"num_beams": 1,
|
176 |
+
"max_new_tokens": 512
|
177 |
+
})()
|
178 |
+
|
179 |
+
eval_model(args)
|
180 |
+
```
|
181 |
+
</details>
|
182 |
+
|
183 |
+
### Important
|
184 |
+
We use different `conv_mode` for different models. Replace the `conv_mode` in `args` according to this table:
|
185 |
+
| model | conv_mode |
|
186 |
+
|---------------- |----------- |
|
187 |
+
| TinyLLaVA-3.1B | phi |
|
188 |
+
| TinyLLaVA-2.0B | phi |
|
189 |
+
| TinyLLaVA-1.5B | v1 |
|
190 |
+
|
191 |
+
## Evaluation
|
192 |
+
To ensure the reproducibility, we evaluate the models with greedy decoding.
|
193 |
+
|
194 |
+
See [Evaluation.md](https://github.com/DLCV-BUAA/TinyLLaVABench/blob/main/docs/Evaluation.md)
|
195 |
+
|
196 |
+
## Data Preparation
|
197 |
+
|
198 |
+
In our paper, we used two different datasets: the [LLaVA dataset](https://github.com/haotian-liu/LLaVA?tab=readme-ov-file#pretrain-feature-alignment) and the [ShareGPT4V dataset](https://github.com/InternLM/InternLM-XComposer/blob/main/projects/ShareGPT4V/docs/Data.md), and compared their differences. In this section, we provide information on data preparation.
|
199 |
+
|
200 |
+
### Pretraining Images
|
201 |
+
* LLaVA: The pretraining images of LLaVA is from the 558K subset of the LAION-CC-SBU dataset.
|
202 |
+
* ShareGPT4V: The pretraining images of ShareGPT4V is a mixture of 558K LAION-CC-SBU subset, SAM dataset, and COCO dataset.
|
203 |
+
|
204 |
+
### Pretraining Annotations
|
205 |
+
* LLaVA: The pretraining annotations of LLaVA are [here](https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain).
|
206 |
+
* ShareGPT4V: The pretraining annotations of ShareGPT4V are [here](https://huggingface.co/datasets/Lin-Chen/ShareGPT4V/blob/main/share-captioner_coco_lcs_sam_1246k_1107.json).
|
207 |
+
|
208 |
+
|
209 |
+
### SFT Images & Annotations
|
210 |
+
The majority of the two SFT datasets are the same, with the exception that the 23K detailed description data in LLaVA-1.5-SFT being replaced with detailed captions randomly sampled from the [100K ShareGPT4V data](https://huggingface.co/datasets/Lin-Chen/ShareGPT4V/blob/main/sharegpt4v_instruct_gpt4-vision_cap100k.json).
|
211 |
+
|
212 |
+
### Download data
|
213 |
+
|
214 |
+
1. Download relevant images
|
215 |
+
|
216 |
+
- LAION-CC-SBU-558K: [images.zip](https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain/blob/main/images.zip)
|
217 |
+
- COCO: This dataset is from the [COCO2017 challenge](https://cocodataset.org/). Download: [train2017](http://images.cocodataset.org/zips/train2017.zip)
|
218 |
+
- WebData: This dataset is curated by the [ShareGPT4V project](https://github.com/InternLM/InternLM-XComposer/tree/main/projects/ShareGPT4V). Download: [images](https://drive.google.com/drive/folders/1tCUQ-sq6vdshZVkF0ZeF3K4eztkXJgax?usp=sharing). Only for academic usage.
|
219 |
+
- SAM: This dataset is collected by [Meta](https://ai.meta.com/datasets/segment-anything-downloads/). Download: [images](https://ai.meta.com/datasets/segment-anything-downloads/). We only use 000000~000050.tar for now. If you just want to use ShareGPT4V for SFT, you can quickly download 9K images from [here](https://drive.google.com/file/d/1dKumdOKSXtV7lIXdrG7jsIK_z2vZv2gs/view?usp=drive_link).
|
220 |
+
- GQA: [GQA project page](https://cs.stanford.edu/people/dorarad/gqa/about.html). Download: [images](https://downloads.cs.stanford.edu/nlp/data/gqa/images.zip)
|
221 |
+
- OCR-VQA: [OCR-VQA project page](https://ocr-vqa.github.io/). Download: [download script](https://drive.google.com/drive/folders/1_GYPY5UkUy7HIcR0zq3ZCFgeZN7BAfm_?usp=sharing). We save all files as `.jpg`
|
222 |
+
- TextVQA: [TextVQA project page](https://textvqa.org/). Download: [trainvalimages](https://dl.fbaipublicfiles.com/textvqa/images/train_val_images.zip)
|
223 |
+
- VisualGenome: [VisualGenome project page](https://homes.cs.washington.edu/~ranjay/visualgenome/index.html). Download: [part1](https://cs.stanford.edu/people/rak248/VG_100K_2/images.zip), [part2](https://cs.stanford.edu/people/rak248/VG_100K_2/images2.zip)
|
224 |
+
|
225 |
+
|
226 |
+
2. Download relevant annotations
|
227 |
+
|
228 |
+
- LLaVA's pretraining annotations: [blip_laion_cc_sbu_558k.json](https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain)
|
229 |
+
- LLaVA's SFT annotations: [llava_v1_5_mix665k.json](https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/blob/main/llava_v1_5_mix665k.json)
|
230 |
+
- ShareGPT4V's pretraining annotations: [share-captioner_coco_lcs_sam_1246k_1107.json](https://huggingface.co/datasets/Lin-Chen/ShareGPT4V/blob/main/share-captioner_coco_lcs_sam_1246k_1107.json)
|
231 |
+
- ShareGPT4V's SFT annotations: [sharegpt4v_mix665k_cap23k_coco-ap9k_lcs3k_sam9k_div2k.json](https://huggingface.co/datasets/Lin-Chen/ShareGPT4V/blob/main/sharegpt4v_mix665k_cap23k_coco-ap9k_lcs3k_sam9k_div2k.json)
|
232 |
+
|
233 |
+
|
234 |
+
### Organize Data
|
235 |
+
|
236 |
+
Organize the image files and annotation files as follows in `path/to/your/data`:
|
237 |
+
|
238 |
+
```none
|
239 |
+
data
|
240 |
+
βββ llava
|
241 |
+
β βββ llava_pretrain
|
242 |
+
β β βββ images
|
243 |
+
β β βββ blip_laion_cc_sbu_558k.json
|
244 |
+
βββ coco
|
245 |
+
β βββ train2017
|
246 |
+
βββ sam
|
247 |
+
β βββ images
|
248 |
+
βββ gqa
|
249 |
+
β βββ images
|
250 |
+
βββ ocr_vqa
|
251 |
+
β βββ images
|
252 |
+
βββ textvqa
|
253 |
+
β βββ train_images
|
254 |
+
βββ vg
|
255 |
+
β βββ VG_100K
|
256 |
+
β βββ VG_100K_2
|
257 |
+
βββ share_textvqa
|
258 |
+
β βββ images
|
259 |
+
βββ web-celebrity
|
260 |
+
β βββ images
|
261 |
+
βββ web-landmark
|
262 |
+
β βββ images
|
263 |
+
βββ wikiart
|
264 |
+
β βββ images
|
265 |
+
βββ text_files
|
266 |
+
β βββ llava_v1_5_mix665k.json
|
267 |
+
β βββ share-captioner_coco_lcs_sam_1246k_1107.json
|
268 |
+
β βββ sharegpt4v_mix665k_cap23k_coco-ap9k_lcs3k_sam9k_div2k.json
|
269 |
+
```
|
270 |
+
|
271 |
+
## Train
|
272 |
+
|
273 |
+
**This section we describe the base recipe.**
|
274 |
+
### Hyperparameters
|
275 |
+
Both hyperparameters used in pretraining and finetuning are provided below.
|
276 |
+
|
277 |
+
1. Pretraining
|
278 |
+
|
279 |
+
| Hyperparameter | Global Batch Size | Learning rate | Epochs | Max length | Weight decay |
|
280 |
+
|----------------| ---: | ---: | ---: |-----------:| ---: |
|
281 |
+
| TinyLLaVA-3.1B | 256 | 1e-3 | 1 | 3072 | 0 |
|
282 |
+
|
283 |
+
2. Finetuning
|
284 |
+
|
285 |
+
| Hyperparameter | Global Batch Size | Learning rate | Epochs | Max length | Weight decay |
|
286 |
+
|----------------| ---: | ---: | ---: |-----------:| ---: |
|
287 |
+
| TinyLLaVA-3.1B | 128 | 2e-5 | 1 | 3072 | 0 |
|
288 |
+
|
289 |
+
### Pretrain
|
290 |
+
|
291 |
+
**Replace paths to your paths**
|
292 |
+
|
293 |
+
Training script with DeepSpeed ZeRO-2: [`pretrain.sh`](https://github.com/DLCV-BUAA/TinyLLaVABench/blob/main/scripts/tiny_llava/pretrain.sh).
|
294 |
+
|
295 |
+
### Finetune
|
296 |
+
|
297 |
+
**Replace paths to your paths**
|
298 |
+
|
299 |
+
Training script with DeepSpeed ZeRO-3: [`finetune.sh`](https://github.com/DLCV-BUAA/TinyLLaVABench/blob/main/scripts/tiny_llava/finetune.sh).
|
300 |
+
|
301 |
+
## Custom-Finetune
|
302 |
+
|
303 |
+
Check out our custom finetune using LoRA [here](https://github.com/DLCV-BUAA/TinyLLaVABench/blob/dev/docs/CUTOM_FINETUNE.md).
|
304 |
|
|
|
|
|
305 |
|
306 |
#### - Prompt Template
|
307 |
The model supports multi-image and multi-prompt generation. When using the model, make sure to follow the correct prompt template (`USER: <image>xxx\nASSISTANT:`), where `<image>` token is a place-holding special token for image embeddings.
|
|
|
347 |
print(processor.decode(output[0][2:], skip_special_tokens=True))
|
348 |
```
|
349 |
|
|
|
|
|
|
|
350 |
## ✏ Citation
|
351 |
|
352 |
If you find our paper and code useful in your research, please consider giving a star :star: and citation :pencil:.
|
|
|
360 |
archivePrefix={arXiv},
|
361 |
primaryClass={cs.LG}
|
362 |
}
|
363 |
+
```
|
364 |
+
|
365 |
+
|
366 |
+
## β€οΈ Community efforts
|
367 |
+
* Our codebase is built upon the [LLaVA](https://github.com/haotian-liu/LLaVA) project. Great work!
|
368 |
+
* Our project uses data from the [ShareGPT4V](https://github.com/InternLM/InternLM-XComposer/tree/main/projects/ShareGPT4V) project. Great work!
|
369 |
+
|