Image-Text-to-Text
Transformers
Safetensors
English
Chinese
llava
vision-language
llm
lmm
conversational
Inference Endpoints
bczhou commited on
Commit
1eb14fd
β€’
1 Parent(s): 7c46f5f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +292 -25
README.md CHANGED
@@ -1,43 +1,307 @@
1
  ---
2
  license: apache-2.0
3
  datasets:
 
4
  - liuhaotian/LLaVA-Pretrain
5
  - liuhaotian/LLaVA-Instruct-150K
6
  language:
7
  - en
8
  - zh
9
- library_name: transformers
 
 
 
 
10
  ---
 
11
 
12
- # WORK IN PROGRESS
13
- We present TinyLLaVA, a small vision-language chatbot (1.4B) that reaches comparable performances with contemporary vision language models on common benchmarks, using less parameters.
14
- TinyLLaVA was trained by finetuning [TinyLlama](https://huggingface.co/PY007/TinyLlama-1.1B-Chat-v0.3) on the [LLaVA-1.5](https://github.com/haotian-liu/LLaVA) dataset, following the training recipe of [LLaVA-1.5](https://github.com/haotian-liu/LLaVA). For more details, please refer to the [LLaVA-1.5 paper](https://arxiv.org/abs/2310.03744).
15
 
 
16
 
17
- ## Model Performance
18
- We have evaluated TinyLLaVA on [GQA](https://cs.stanford.edu/people/dorarad/gqa/about.html), [VizWiz](https://www.vizwiz.com/), [VQAv2](https://visualqa.org/), [TextVQA](https://textvqa.org/) and [SQA](https://github.com/lupantech/ScienceQA).
 
 
 
 
 
 
 
 
19
 
20
- | Model | VQAv2 | GQA | SQA | TextVQA | VizWiz |
21
- | -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: |
22
- | TinyLLaVA-v1-tinyllama | 73.41 | 57.54 | 59.40 | 46.37 | |
23
- | TinyLLaVA-v1-stablelm | 74.9 | 58.86 | 62.82 | 49.52 | 35.6 |
24
- | TinyLLaVA-v1.1-tinyllama| 75.24 | 59.43 | 58.80 | 48.05 | 34.74 |
25
- | TinyLLaVA-v1.1-stablelm| 76.34 | 60.26 | 63.06 | 51.6 | 36.34 |
26
- | BLIP-2 | 41.00 | 41.00 | 61.00 | 42.50 | 19.60 |
27
- | LLaVA-v1.5-7B | 78.50 | 62.00 | 66.80 | 61.3 | 50 |
28
- | LLaVA-v1.5-13B | 80.00 | 63.30 | 71.60 | 61.3 | 53.6 |
29
- | Qwen-VL-7B | 78.80 | 59.30 | 67.10 | 63.8 | 35.2 |
30
- | Qwen-VL-13B | 78.20 | 57.50 | 68.20 | 61.5 | 38.9 |
 
 
31
 
 
32
 
 
33
 
34
- More evaluations are ongoing.
 
 
 
 
 
 
 
 
35
 
36
 
37
- ## Model Preparations
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38
 
39
- #### - Transformers Version
40
- Make sure to have `transformers >= 4.35.3`.
41
 
42
  #### - Prompt Template
43
  The model supports multi-image and multi-prompt generation. When using the model, make sure to follow the correct prompt template (`USER: <image>xxx\nASSISTANT:`), where `<image>` token is a place-holding special token for image embeddings.
@@ -83,9 +347,6 @@ output = model.generate(**inputs, max_new_tokens=200, do_sample=False)
83
  print(processor.decode(output[0][2:], skip_special_tokens=True))
84
  ```
85
 
86
- ## Contact
87
- This model was trained by [Baichuan Zhou](https://baichuanzhou.github.io/), from Beihang Univerisity, under the supervision of [Prof. Lei Huang](https://huangleibuaa.github.io/).
88
-
89
  ## &#x270F; Citation
90
 
91
  If you find our paper and code useful in your research, please consider giving a star :star: and citation :pencil:.
@@ -99,4 +360,10 @@ If you find our paper and code useful in your research, please consider giving a
99
  archivePrefix={arXiv},
100
  primaryClass={cs.LG}
101
  }
102
- ```
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
  datasets:
4
+ - Lin-Chen/ShareGPT4V
5
  - liuhaotian/LLaVA-Pretrain
6
  - liuhaotian/LLaVA-Instruct-150K
7
  language:
8
  - en
9
  - zh
10
+ tags:
11
+ - llava
12
+ - vision-language
13
+ - llm
14
+ - lmm
15
  ---
16
+ <h2 align="center"> <a href="https://arxiv.org/abs/2402.14289">TinyLLaVA: A Framework of Small-scale Large Multimodal Models</a>
17
 
18
+ <h5 align="center">
 
 
19
 
20
+ [![github](https://img.shields.io/badge/GitHub-TinyLLaVA-blue)](https://github.com/DLCV-BUAA/TinyLLaVABench) [![arXiv](https://img.shields.io/badge/Arxiv-2402.14289-b31b1b.svg?logo=arXiv)](https://arxiv.org/abs/2402.14289) [![License](https://img.shields.io/badge/License-Apache%202.0-yellow)](https://github.com/PKU-YuanGroup/MoE-LLaVA/blob/main/LICENSE)
21
 
22
+ ## &#x1F389; News
23
+ * **[2024.03.10]** base recipe out!
24
+ * **[2024.03.10]** Finetune scripts out!
25
+ * **[2024.02.25]** Update evaluation scripts and docs!
26
+ * **[2024.02.25]** Data descriptions out. Release TinyLLaVA-1.5B and TinyLLaVA-2.0B!
27
+ * **[2024.02.24]** Example code on inference and model loading added!
28
+ * **[2024.02.23]** Evaluation code and scripts released!
29
+ * **[2024.02.21]** Creating the [TinyLLaVABench](https://github.com/DLCV-BUAA/TinyLLavaBench) repository on GitHub!
30
+ * **[2024.02.21]** Our paper: [TinyLLaVA: A Framework of Small-scale Large Multimodal Models](https://arxiv.org/abs/2402.14289) is out!
31
+ * **[2024.01.11]** Our fist model [TinyLLaVA-1.4B](https://huggingface.co/bczhou/tiny-llava-v1-hf) is out!
32
 
33
+ ## &#x231B; TODO
34
+ - [ ] Add support for Ollama and llama.cpp.
35
+ - [x] Developers' guide / How to build demo locally.
36
+ - [x] Training and custom finetuning docs.
37
+ - [x] Model Zoo descriptions.
38
+ - [x] Examples and inference.
39
+ - [x] Release code for training.
40
+ - [x] Add descriptions for evaluation.
41
+ - [x] Add descriptions for data preparation.
42
+ - [x] Release TinyLLaVA-1.5B and TinyLLaVA-2.0B.
43
+ - [x] Release TinyLLaVA-3.1B.
44
+ - [x] Release the evaluation code and weights today(2024.2.23).
45
+ ### &#x1F525; High performance, but with fewer parameters
46
 
47
+ - Our best model, TinyLLaVA-3.1B, achieves better overall performance against existing 7B models such as LLaVA-1.5 and Qwen-VL.
48
 
49
+ ## Contents
50
 
51
+ - [Install](#x1f527-requirements-and-installation)
52
+ - [Model Zoo](#x1f433-model-zoo)
53
+ - [Demo](#Demo)
54
+ - [Quick Start](#x1f527-quick-start)
55
+ - [Run Inference](#x1f527-run-inference)
56
+ - [Evaluation](#evaluation)
57
+ - [Data](#data-preparation)
58
+ - [Train](#train)
59
+ - [Custom Finetune](#custom-finetune)
60
 
61
 
62
+ ## &#x1F527; Requirements and Installation
63
+
64
+ We recommend the requirements as follows.
65
+
66
+ 1. Clone this repository and navigate to LLaVA folder
67
+ ```bash
68
+ git clone https://github.com/DLCV-BUAA/TinyLLaVABench.git
69
+ cd TinyLLaVABench
70
+ ```
71
+
72
+ 2. Install Package
73
+ ```Shell
74
+ conda create -n tinyllava python=3.10 -y
75
+ conda activate tinyllava
76
+ pip install --upgrade pip # enable PEP 660 support
77
+ pip install -e .
78
+ ```
79
+
80
+ 3. Install additional packages for training cases
81
+ ```Shell
82
+ pip install -e ".[train]"
83
+ pip install flash-attn --no-build-isolation
84
+ ```
85
+ ### Upgrade to the latest code base
86
+
87
+ ```Shell
88
+ git pull
89
+ pip install -e .
90
+
91
+ # if you see some import errors when you upgrade, please try running the command below (without #)
92
+ # pip install flash-attn --no-build-isolation --no-cache-dir
93
+ ```
94
+
95
+ ## &#x1F433; Model Zoo
96
+ ### Legacy Model
97
+ - [tiny-llava-hf](https://huggingface.co/bczhou/tiny-llava-v1-hf)
98
+
99
+ ### Pretrained Models
100
+ - [TinyLLaVA-3.1B](https://huggingface.co/bczhou/TinyLLaVA-3.1B)
101
+ - [TinyLLaVA-2.0B](https://huggingface.co/bczhou/TinyLLaVA-2.0B)
102
+ - [TinyLLaVA-1.5B](https://huggingface.co/bczhou/TinyLLaVA-1.5B)
103
+
104
+ ### Model Details
105
+ | Name | LLM | Checkpoint | LLaVA-Bench-Wild | MME | MMBench | MM-Vet | SQA-image | VQA-v2 | GQA | TextVQA |
106
+ |---------------|-------------------|------------------------------------------------|------------------|----------|---------|--------|-----------|--------|-------|---------|
107
+ | TinyLLaVA-3.1B | Phi-2 | [TinyLLaVA-3.1B](https://huggingface.co/bczhou/TinyLLaVA-3.1B) | 75.8 | 1464.9 | 66.9 | 32.0 | 69.1 | 79.9 | 62.0 | 59.1 |
108
+ | TinyLLaVA-2.0B | StableLM-2-1.6B | [TinyLLaVA-2.0B](https://huggingface.co/bczhou/TinyLLaVA-2.0B) | 66.4 | 1433.8 | 63.3 | 32.6 | 64.7 | 78.9 | 61.9 | 56.4 |
109
+ | TinyLLaVA-1.5B | TinyLlama | [TinyLLaVA-1.5B](https://huggingface.co/bczhou/TinyLLaVA-1.5B) | 60.8 | 1276.5 | 55.2 | 25.8 | 60.3 | 76.9 | 60.3 | 51.7 |
110
+
111
+
112
+ ## Demo
113
+
114
+ ### Gradio Web Demo
115
+
116
+ Launch a local web demo by running:
117
+ ```shell
118
+ python tinyllava/serve/app.py --model-path bczhou/TinyLLaVA-3.1B --model-name TinyLLaVA-3.1B
119
+ ```
120
+
121
+ ### CLI Inference
122
+
123
+ We also support running inference with CLI. To use our model, run:
124
+ ```shell
125
+ python -m tinyllava.serve.cli \
126
+ --model-path bczhou/TinyLLaVA-3.1B \
127
+ --image-file "./tinyllava/serve/examples/extreme_ironing.jpg"
128
+ ```
129
+
130
+
131
+ ## &#x1F527; Quick Start
132
+
133
+ <details>
134
+ <summary>Load model</summary>
135
+
136
+ ```Python
137
+ from tinyllava.model.builder import load_pretrained_model
138
+ from tinyllava.mm_utils import get_model_name_from_path
139
+ from tinyllava.eval.run_tiny_llava import eval_model
140
+
141
+ model_path = "bczhou/TinyLLaVA-3.1B"
142
+
143
+ tokenizer, model, image_processor, context_len = load_pretrained_model(
144
+ model_path=model_path,
145
+ model_base=None,
146
+ model_name=get_model_name_from_path(model_path)
147
+ )
148
+ ```
149
+ </details>
150
+
151
+ ## &#x1F527; Run Inference
152
+ Here's an example of running inference with [TinyLLaVA-3.1B](https://huggingface.co/bczhou/TinyLLaVA-3.1B)
153
+ <details>
154
+ <summary>Run Inference</summary>
155
+
156
+ ```Python
157
+ from tinyllava.model.builder import load_pretrained_model
158
+ from tinyllava.mm_utils import get_model_name_from_path
159
+ from tinyllava.eval.run_tiny_llava import eval_model
160
+
161
+ model_path = "bczhou/TinyLLaVA-3.1B"
162
+ prompt = "What are the things I should be cautious about when I visit here?"
163
+ image_file = "https://llava-vl.github.io/static/images/view.jpg"
164
+
165
+ args = type('Args', (), {
166
+ "model_path": model_path,
167
+ "model_base": None,
168
+ "model_name": get_model_name_from_path(model_path),
169
+ "query": prompt,
170
+ "conv_mode": "phi",
171
+ "image_file": image_file,
172
+ "sep": ",",
173
+ "temperature": 0,
174
+ "top_p": None,
175
+ "num_beams": 1,
176
+ "max_new_tokens": 512
177
+ })()
178
+
179
+ eval_model(args)
180
+ ```
181
+ </details>
182
+
183
+ ### Important
184
+ We use different `conv_mode` for different models. Replace the `conv_mode` in `args` according to this table:
185
+ | model | conv_mode |
186
+ |---------------- |----------- |
187
+ | TinyLLaVA-3.1B | phi |
188
+ | TinyLLaVA-2.0B | phi |
189
+ | TinyLLaVA-1.5B | v1 |
190
+
191
+ ## Evaluation
192
+ To ensure the reproducibility, we evaluate the models with greedy decoding.
193
+
194
+ See [Evaluation.md](https://github.com/DLCV-BUAA/TinyLLaVABench/blob/main/docs/Evaluation.md)
195
+
196
+ ## Data Preparation
197
+
198
+ In our paper, we used two different datasets: the [LLaVA dataset](https://github.com/haotian-liu/LLaVA?tab=readme-ov-file#pretrain-feature-alignment) and the [ShareGPT4V dataset](https://github.com/InternLM/InternLM-XComposer/blob/main/projects/ShareGPT4V/docs/Data.md), and compared their differences. In this section, we provide information on data preparation.
199
+
200
+ ### Pretraining Images
201
+ * LLaVA: The pretraining images of LLaVA is from the 558K subset of the LAION-CC-SBU dataset.
202
+ * ShareGPT4V: The pretraining images of ShareGPT4V is a mixture of 558K LAION-CC-SBU subset, SAM dataset, and COCO dataset.
203
+
204
+ ### Pretraining Annotations
205
+ * LLaVA: The pretraining annotations of LLaVA are [here](https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain).
206
+ * ShareGPT4V: The pretraining annotations of ShareGPT4V are [here](https://huggingface.co/datasets/Lin-Chen/ShareGPT4V/blob/main/share-captioner_coco_lcs_sam_1246k_1107.json).
207
+
208
+
209
+ ### SFT Images & Annotations
210
+ The majority of the two SFT datasets are the same, with the exception that the 23K detailed description data in LLaVA-1.5-SFT being replaced with detailed captions randomly sampled from the [100K ShareGPT4V data](https://huggingface.co/datasets/Lin-Chen/ShareGPT4V/blob/main/sharegpt4v_instruct_gpt4-vision_cap100k.json).
211
+
212
+ ### Download data
213
+
214
+ 1. Download relevant images
215
+
216
+ - LAION-CC-SBU-558K: [images.zip](https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain/blob/main/images.zip)
217
+ - COCO: This dataset is from the [COCO2017 challenge](https://cocodataset.org/). Download: [train2017](http://images.cocodataset.org/zips/train2017.zip)
218
+ - WebData: This dataset is curated by the [ShareGPT4V project](https://github.com/InternLM/InternLM-XComposer/tree/main/projects/ShareGPT4V). Download: [images](https://drive.google.com/drive/folders/1tCUQ-sq6vdshZVkF0ZeF3K4eztkXJgax?usp=sharing). Only for academic usage.
219
+ - SAM: This dataset is collected by [Meta](https://ai.meta.com/datasets/segment-anything-downloads/). Download: [images](https://ai.meta.com/datasets/segment-anything-downloads/). We only use 000000~000050.tar for now. If you just want to use ShareGPT4V for SFT, you can quickly download 9K images from [here](https://drive.google.com/file/d/1dKumdOKSXtV7lIXdrG7jsIK_z2vZv2gs/view?usp=drive_link).
220
+ - GQA: [GQA project page](https://cs.stanford.edu/people/dorarad/gqa/about.html). Download: [images](https://downloads.cs.stanford.edu/nlp/data/gqa/images.zip)
221
+ - OCR-VQA: [OCR-VQA project page](https://ocr-vqa.github.io/). Download: [download script](https://drive.google.com/drive/folders/1_GYPY5UkUy7HIcR0zq3ZCFgeZN7BAfm_?usp=sharing). We save all files as `.jpg`
222
+ - TextVQA: [TextVQA project page](https://textvqa.org/). Download: [trainvalimages](https://dl.fbaipublicfiles.com/textvqa/images/train_val_images.zip)
223
+ - VisualGenome: [VisualGenome project page](https://homes.cs.washington.edu/~ranjay/visualgenome/index.html). Download: [part1](https://cs.stanford.edu/people/rak248/VG_100K_2/images.zip), [part2](https://cs.stanford.edu/people/rak248/VG_100K_2/images2.zip)
224
+
225
+
226
+ 2. Download relevant annotations
227
+
228
+ - LLaVA's pretraining annotations: [blip_laion_cc_sbu_558k.json](https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain)
229
+ - LLaVA's SFT annotations: [llava_v1_5_mix665k.json](https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/blob/main/llava_v1_5_mix665k.json)
230
+ - ShareGPT4V's pretraining annotations: [share-captioner_coco_lcs_sam_1246k_1107.json](https://huggingface.co/datasets/Lin-Chen/ShareGPT4V/blob/main/share-captioner_coco_lcs_sam_1246k_1107.json)
231
+ - ShareGPT4V's SFT annotations: [sharegpt4v_mix665k_cap23k_coco-ap9k_lcs3k_sam9k_div2k.json](https://huggingface.co/datasets/Lin-Chen/ShareGPT4V/blob/main/sharegpt4v_mix665k_cap23k_coco-ap9k_lcs3k_sam9k_div2k.json)
232
+
233
+
234
+ ### Organize Data
235
+
236
+ Organize the image files and annotation files as follows in `path/to/your/data`:
237
+
238
+ ```none
239
+ data
240
+ β”œβ”€β”€ llava
241
+ β”‚ β”œβ”€β”€ llava_pretrain
242
+ β”‚ β”‚ β”œβ”€β”€ images
243
+ β”‚ β”‚ β”œβ”€β”€ blip_laion_cc_sbu_558k.json
244
+ β”œβ”€β”€ coco
245
+ β”‚ β”œβ”€β”€ train2017
246
+ β”œβ”€β”€ sam
247
+ β”‚ β”œβ”€β”€ images
248
+ β”œβ”€β”€ gqa
249
+ β”‚ β”œβ”€β”€ images
250
+ β”œβ”€β”€ ocr_vqa
251
+ β”‚ β”œβ”€β”€ images
252
+ β”œβ”€β”€ textvqa
253
+ β”‚ β”œβ”€β”€ train_images
254
+ β”œβ”€β”€ vg
255
+ β”‚ β”œβ”€β”€ VG_100K
256
+ β”‚ β”œβ”€β”€ VG_100K_2
257
+ β”œβ”€β”€ share_textvqa
258
+ β”‚ β”œβ”€β”€ images
259
+ β”œβ”€β”€ web-celebrity
260
+ β”‚ β”œβ”€β”€ images
261
+ β”œβ”€β”€ web-landmark
262
+ β”‚ β”œβ”€β”€ images
263
+ β”œβ”€β”€ wikiart
264
+ β”‚ β”œβ”€β”€ images
265
+ β”œβ”€β”€ text_files
266
+ β”‚ β”œβ”€β”€ llava_v1_5_mix665k.json
267
+ β”‚ β”œβ”€β”€ share-captioner_coco_lcs_sam_1246k_1107.json
268
+ β”‚ β”œβ”€β”€ sharegpt4v_mix665k_cap23k_coco-ap9k_lcs3k_sam9k_div2k.json
269
+ ```
270
+
271
+ ## Train
272
+
273
+ **This section we describe the base recipe.**
274
+ ### Hyperparameters
275
+ Both hyperparameters used in pretraining and finetuning are provided below.
276
+
277
+ 1. Pretraining
278
+
279
+ | Hyperparameter | Global Batch Size | Learning rate | Epochs | Max length | Weight decay |
280
+ |----------------| ---: | ---: | ---: |-----------:| ---: |
281
+ | TinyLLaVA-3.1B | 256 | 1e-3 | 1 | 3072 | 0 |
282
+
283
+ 2. Finetuning
284
+
285
+ | Hyperparameter | Global Batch Size | Learning rate | Epochs | Max length | Weight decay |
286
+ |----------------| ---: | ---: | ---: |-----------:| ---: |
287
+ | TinyLLaVA-3.1B | 128 | 2e-5 | 1 | 3072 | 0 |
288
+
289
+ ### Pretrain
290
+
291
+ **Replace paths to your paths**
292
+
293
+ Training script with DeepSpeed ZeRO-2: [`pretrain.sh`](https://github.com/DLCV-BUAA/TinyLLaVABench/blob/main/scripts/tiny_llava/pretrain.sh).
294
+
295
+ ### Finetune
296
+
297
+ **Replace paths to your paths**
298
+
299
+ Training script with DeepSpeed ZeRO-3: [`finetune.sh`](https://github.com/DLCV-BUAA/TinyLLaVABench/blob/main/scripts/tiny_llava/finetune.sh).
300
+
301
+ ## Custom-Finetune
302
+
303
+ Check out our custom finetune using LoRA [here](https://github.com/DLCV-BUAA/TinyLLaVABench/blob/dev/docs/CUTOM_FINETUNE.md).
304
 
 
 
305
 
306
  #### - Prompt Template
307
  The model supports multi-image and multi-prompt generation. When using the model, make sure to follow the correct prompt template (`USER: <image>xxx\nASSISTANT:`), where `<image>` token is a place-holding special token for image embeddings.
 
347
  print(processor.decode(output[0][2:], skip_special_tokens=True))
348
  ```
349
 
 
 
 
350
  ## &#x270F; Citation
351
 
352
  If you find our paper and code useful in your research, please consider giving a star :star: and citation :pencil:.
 
360
  archivePrefix={arXiv},
361
  primaryClass={cs.LG}
362
  }
363
+ ```
364
+
365
+
366
+ ## ❀️ Community efforts
367
+ * Our codebase is built upon the [LLaVA](https://github.com/haotian-liu/LLaVA) project. Great work!
368
+ * Our project uses data from the [ShareGPT4V](https://github.com/InternLM/InternLM-XComposer/tree/main/projects/ShareGPT4V) project. Great work!
369
+