Update VRAM estimates
Browse files
README.md
CHANGED
@@ -12,10 +12,6 @@ Using <a href="https://github.com/turboderp/exllamav2/releases/tag/v0.0.18">turb
|
|
12 |
|
13 |
Each branch contains an individual bits per weight, with the main one containing only the meaurement.json for further conversions.
|
14 |
|
15 |
-
Conversion was done using the default calibration dataset.
|
16 |
-
|
17 |
-
Default arguments used except when the bits per weight is above 6.0, at that point the lm_head layer is quantized at 8 bits per weight instead of the default 6.
|
18 |
-
|
19 |
Original model: https://huggingface.co/Vezora/Mistral-22B-v0.2
|
20 |
|
21 |
## Prompt Format
|
@@ -26,17 +22,16 @@ Original model: https://huggingface.co/Vezora/Mistral-22B-v0.2
|
|
26 |
### Assistant:
|
27 |
```
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
<a href="https://huggingface.co/bartowski/Mistral-22B-v0.2-exl2/tree/6_5">6.5 bits per weight</a>
|
32 |
-
|
33 |
-
<a href="https://huggingface.co/bartowski/Mistral-22B-v0.2-exl2/tree/5_0">5.0 bits per weight</a>
|
34 |
-
|
35 |
-
<a href="https://huggingface.co/bartowski/Mistral-22B-v0.2-exl2/tree/4_25">4.25 bits per weight</a>
|
36 |
-
|
37 |
-
<a href="https://huggingface.co/bartowski/Mistral-22B-v0.2-exl2/tree/3_5">3.5 bits per weight</a>
|
38 |
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
|
42 |
## Download instructions
|
|
|
12 |
|
13 |
Each branch contains an individual bits per weight, with the main one containing only the meaurement.json for further conversions.
|
14 |
|
|
|
|
|
|
|
|
|
15 |
Original model: https://huggingface.co/Vezora/Mistral-22B-v0.2
|
16 |
|
17 |
## Prompt Format
|
|
|
22 |
### Assistant:
|
23 |
```
|
24 |
|
25 |
+
## Available sizes
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
+
| Branch | Bits | lm_head bits | VRAM (4k) | VRAM (16k) | VRAM (32k) | Description |
|
28 |
+
| ------ | ---- | ------------ | ---- | ---- | ---- | ----------- |
|
29 |
+
| [8_0](https://huggingface.co/bartowski/Mistral-22B-v0.2-exl2/tree/8_0) | 8.0 | 8.0 | 23.5 GB | 26.0 GB | 29.5 GB | Near unquantized performance, max quality ExLlamaV2 can create. |
|
30 |
+
| [6_5](https://huggingface.co/bartowski/Mistral-22B-v0.2-exl2/tree/6_5) | 6.5 | 8.0 | 19.4 GB | 21.9 GB | 25.4 GB | Near unquantized performance at vastly reduced size, **recommended**. |
|
31 |
+
| [5_0](https://huggingface.co/bartowski/Mistral-22B-v0.2-exl2/tree/5_0) | 5.0 | 6.0 | 15.5 GB | 18.0 GB | 21.5 GB | Smaller size, lower quality, still very high performance, **recommended**. |
|
32 |
+
| [4_25](https://huggingface.co/bartowski/Mistral-22B-v0.2-exl2/tree/4_25) | 4.25 | 6.0 | 13.3 GB | 15.8 GB | 19.3 GB | GPTQ equivalent bits per weight, slightly higher quality. |
|
33 |
+
| [3_5](https://huggingface.co/bartowski/Mistral-22B-v0.2-exl2/tree/3_5) | 3.5 | 6.0 | 11.6 GB | 14.1 GB | 17.6 GB | Lower quality, only use if you have to. |
|
34 |
+
| [3_0](https://huggingface.co/bartowski/Mistral-22B-v0.2-exl2/tree/3_0) | 3.0 | 6.0 | 9.8 GB | 12.3 GB | 15.8 GB | Very low quality. Usable on 12GB with low context or 16gb with 32k. |
|
35 |
|
36 |
|
37 |
## Download instructions
|