PEFT
File size: 2,759 Bytes
e447ff3
 
 
2ce7599
 
 
 
 
 
 
 
 
 
e447ff3
af0c624
e447ff3
2ce7599
e447ff3
 
 
 
 
 
 
 
 
 
2ce7599
e447ff3
2ce7599
 
 
e447ff3
 
 
 
 
 
1403a95
 
 
 
 
 
 
 
 
 
e447ff3
 
 
 
 
 
2ce7599
e447ff3
 
 
 
2ce7599
e447ff3
2ce7599
 
e447ff3
 
 
 
 
 
 
 
 
2ce7599
e447ff3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ce7599
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
---
library_name: peft
base_model: AI-Sweden-Models/gpt-sw3-40b
datasets:
- barbaroo/Faroese_BLARK_small
- barbaroo/Books_Faroese
language:
- fo
- sv
- is
- da
- 'no'
- en
---
licence: [LICENCE](https://huggingface.co/AI-Sweden-Models/gpt-sw3-1.3b/blob/main/LICENSE)

# Model Card for Model ID


## Model Details

### Model Description

<!-- Provide a longer summary of what this model is. -->



- **Developed by:** Barbara Scalvini, Language Technology Center, University of the Faroe Islands

- **Model type:** This is a LoRA adapter for GPT-Sw3 with continued pre-training on Faroese data (BLARK corpus, private Faroese books repository). Training was performed for 4 epochs.
- **Language(s) (NLP):** Swedish, English, Norwegian, Danish, Icelandic, Faroese
- **from model [optional]:** AI-Sweden-Models/gpt-sw3-40b


## How to Get Started with the Model

Use the code below to get started with the model.

```python
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM

config = PeftConfig.from_pretrained("barbaroo/gptsw3_lora_fo_40b")
model = AutoModelForCausalLM.from_pretrained("AI-Sweden-Models/gpt-sw3-40b")
model = PeftModel.from_pretrained(model, "barbaroo/gptsw3_lora_fo_40b")

```

[More Information Needed]

## Training Details

### Training Data

<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --
[More Information Needed]



<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->

We trained our model on a corpus derived from the Basic Language Resource Kit for Faroese. For detailed information about the dataset, please see the [BLARK_small](https://huggingface.co/datasets/barbaroo/Faroese_BLARK_small)
Extra training data was taken from a private corpus of Faroese books ( [Faroese Books](https://huggingface.co/datasets/barbaroo/Books_Faroese))



### Testing Data, Factors & Metrics

#### Testing Data

<!-- This should link to a Data Card if possible. -->

Validation/testing was performed on the test split of the Faroese books corpus ( [Faroese Books](https://huggingface.co/datasets/barbaroo/Books_Faroese))

## Training procedure


The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: True
- load_in_4bit: False
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: fp4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float32

### Framework versions


- PEFT 0.6.2.dev0