--- license: apache-2.0 library_name: peft tags: - axolotl - generated_from_trainer base_model: Open-Orca/Mistral-7B-OpenOrca model-index: - name: voyager-axolotl results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.3.0` ```yaml base_model: Open-Orca/Mistral-7B-OpenOrca model_type: MistralForCausalLM tokenizer_type: AutoTokenizer is_mistral_derived_model: true load_in_8bit: false load_in_4bit: true strict: false datasets: - path: baptistecolle/mc_training_data type: completion - path: baptistecolle/mc_training_data_conversations type: sharegpt hub_model_id: baptistecolle/voyager-axolotl dataset_prepared_path: last_run_prepared val_set_size: 0.1 output_dir: ./qlora-out adapter: qlora # gpu_memory_limit: 10 # max_memory: {0: "20GIB"} sequence_len: 8192 sample_packing: true pad_to_sequence_len: true lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj lora_modules_to_save: - embed_tokens - lm_head wandb_project: axolotl-voyager gradient_accumulation_steps: 1 micro_batch_size: 1 num_epochs: 1 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: true fp16: false tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true loss_watchdog_threshold: 5.0 loss_watchdog_patience: 3 warmup_steps: 10 evals_per_epoch: 4 eval_table_size: eval_table_max_new_tokens: 128 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: bos_token: "" eos_token: "" unk_token: "" ```

# voyager-axolotl This model is a fine-tuned version of [Open-Orca/Mistral-7B-OpenOrca](https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7640 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.9292 | 0.0 | 1 | 2.9051 | | 2.0261 | 0.25 | 94 | 1.9768 | | 1.8991 | 0.5 | 188 | 1.8530 | | 1.6994 | 0.75 | 282 | 1.7640 | ### Framework versions - PEFT 0.7.0 - Transformers 4.37.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.16.1 - Tokenizers 0.15.0