import torch from typing import Dict, List, Any from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline import logging # get dtype dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] == 8 else torch.float16 class EndpointHandler: def __init__(self, path=""): # load the model self.tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True) self.model = AutoModelForCausalLM.from_pretrained(path, device_map="auto", torch_dtype=dtype, trust_remote_code=True) # create inference pipeline self.pipeline = pipeline("text-generation", model=self.model, tokenizer=self.tokenizer) def __call__(self, data: Any) -> List[List[Dict[str, float]]]: inputs = data.pop("inputs", data) parameters = data.pop("parameters", None) # pass inputs with all kwargs in data if parameters is not None: prediction = self.pipeline(inputs, **parameters) else: prediction = self.pipeline(inputs) logging.warn("---start---") logging.warn(prediction) logging.warn("---end---") # ignoring parameters! Default to configs in generation_config.json. messages = [{"role": "user", "content": data}] response = self.model.chat(self.tokenizer, messages) logging.warn("---start chat response---") logging.warn(response) logging.warn("---end chat response---") return [[{response: 1.0}]]