import torch from typing import Dict, List, Any from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline from transformers.generation.utils import GenerationConfig # get dtype dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] == 8 else torch.float16 class EndpointHandler: def __init__(self, path=""): # load the model self.tokenizer = AutoTokenizer.from_pretrained("baichuan-inc/Baichuan-13B-Chat", use_fast=False, trust_remote_code=True) self.model = AutoModelForCausalLM.from_pretrained("baichuan-inc/Baichuan-13B-Chat", device_map="auto", torch_dtype=dtype, trust_remote_code=True) self.model.generation_config = GenerationConfig.from_pretrained("baichuan-inc/Baichuan-13B-Chat") def __call__(self, data: Any) -> List[List[Dict[str, float]]]: inputs = data.pop("inputs", data) # ignoring parameters! Default to configs in generation_config.json. messages = [{"role": "user", "content": inputs}] response = self.model.chat(self.tokenizer, messages) if torch.backends.mps.is_available(): torch.mps.empty_cache() return [{'generated_text': response}]