s-JoL commited on
Commit
f123459
1 Parent(s): 3b06617

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +13 -18
README.md CHANGED
@@ -19,7 +19,6 @@ Baichuan-13B-Chat为Baichuan-13B系列模型中对齐后的版本,预训练模
19
  3. **更高效的推理**:为了支持更广大用户的使用,我们本次同时开源了INT8和INT4的量化版本,在几乎没有效果损失的情况下可以很方便的将模型部署在如3090等消费机显卡上。
20
  4. **开源免费可商用**:Baichuan-13B不仅对学术研究完全开放,开发者也仅需邮件申请并获得官方商用许可后,即可以免费商用。
21
 
22
- ## Introduction
23
  Baichuan-13B-Chat is the aligned version in the Baichuan-13B series of models, and the pre-trained model can be found at [Baichuan-13B-Base](https://github.com/baichuan-inc/Baichuan-13B-Base).
24
 
25
  [Baichuan-13B](https://github.com/baichuan-inc/Baichuan-13B) is an open-source, commercially usable large-scale language model developed by Baichuan Intelligence, following [Baichuan-7B](https://github.com/baichuan-inc/baichuan-7B). With 13 billion parameters, it achieves the best performance in standard Chinese and English benchmarks among models of its size. This release includes two versions: pre-training (Baichuan-13B-Base) and alignment (Baichuan-13B-Chat). Baichuan-13B has the following features:
@@ -30,7 +29,7 @@ Baichuan-13B-Chat is the aligned version in the Baichuan-13B series of models, a
30
  4. **Open-source, free, and commercially usable**: Baichuan-13B is not only fully open to academic research, but developers can also use it for free commercially after applying for and receiving official commercial permission via email.
31
 
32
 
33
- ## How to Get Started with the Model
34
 
35
  如下是一个使用Baichuan-13B-Chat进行对话的示例,正确输出为"乔戈里峰。世界第二高峰———乔戈里峰西方登山者称其为k2峰,海拔高度是8611米,位于喀喇昆仑山脉的中巴边境上"
36
  ```python
@@ -60,9 +59,9 @@ response = model.chat(tokenizer, messages)
60
  print(response)
61
  ```
62
 
63
- ## Model Details
64
 
65
- ### Model Description
66
 
67
  <!-- Provide a longer summary of what this model is. -->
68
 
@@ -71,7 +70,7 @@ print(response)
71
  - **Language(s) (NLP):** Chinese/English
72
  - **License:** [Baichuan-13B License]()
73
 
74
- ### Model Sources
75
 
76
  <!-- Provide the basic links for the model. -->
77
 
@@ -101,46 +100,42 @@ The specific parameters are as follows:
101
  | Baichuan-7B | 4,096 | 32 | 32 | 64,000 | 7,000,559,616 | 1.2万亿 | [RoPE](https://arxiv.org/abs/2104.09864) | 4,096 |
102
  | Baichuan-13B | 5,120 | 40 | 40 | 64,000 | 13,264,901,120 | 1.4万亿 | [ALiBi](https://arxiv.org/abs/2108.12409) | 4,096
103
 
104
- ## Uses
105
 
106
  <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
107
 
108
- ### Downstream Use
109
 
110
  <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
111
  我们同时开源出了和本模型配套的训练代码,允许进行高效的Finetune用于下游任务,具体参见[Baichuan-13B](https://github.com/baichuan-inc/Baichuan-13B)。
112
 
113
  We have also open-sourced the training code that accompanies this model, allowing for efficient finetuning for downstream tasks. For more details, please refer to [Baichuan-13B](https://github.com/baichuan-inc/Baichuan-13B).
114
 
115
- ### Out-of-Scope Use
116
 
117
  <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
118
  在没有充分评估风险和采取缓解措施的情况下投入生产使用;任何可能被视为不负责任或有害的使用案例。
119
 
120
  Production use without adequate assessment of risks and mitigation; any use cases which may be considered irresponsible or harmful.
121
 
122
- ## Bias, Risks, and Limitations
123
-
124
  <!-- This section is meant to convey both technical and sociotechnical limitations. -->
125
 
126
  Baichuan-13B可能会产生事实上不正确的输出,不应依赖它产生事实上准确的信息。Baichuan-13B是在各种公共数据集上进行训练的。尽管我们已经做出了巨大的努力来清洗预训练数据,但这个模型可能会生成淫秽、偏见或其他冒犯性的输出。
127
 
128
  Baichuan-13B can produce factually incorrect output, and should not be relied on to produce factually accurate information. Baichuan-13B was trained on various public datasets. While great efforts have been taken to clean the pretraining data, it is possible that this model could generate lewd, biased or otherwise offensive outputs.
129
 
130
- ## Training Details
131
 
132
  训练具体设置参见[Baichuan-13B](https://github.com/baichuan-inc/Baichuan-13B)。
133
 
134
  For specific training settings, please refer to [Baichuan-13B](https://github.com/baichuan-inc/Baichuan-13B).
135
 
136
- ## Evaluation
137
-
138
- # Benchmark结果
139
 
140
  我们在各个 benchmark 下进行了`5-shot`评测,所采用的方法和 [Baichuan-7B](https://github.com/baichuan-inc/Baichuan-7B/) 项目中相同。结果如下���
141
 
142
  We conducted a `5-shot` evaluation under various benchmarks, using the same method as in the [Baichuan-7B](https://github.com/baichuan-inc/Baichuan-7B/) project. The results are as follows:
143
- ## C-Eval
144
 
145
  | Model 5-shot | STEM | Social Sciences | Humanities | Others | Average |
146
  |-------------------------|-------|-----------------|------------|--------|---------|
@@ -155,7 +150,7 @@ We conducted a `5-shot` evaluation under various benchmarks, using the same meth
155
  | **Baichuan-13B-Chat** | **43.7** | **64.6** | **56.2** | **49.2** | **51.5** |
156
  > *说明:表中各个模型的结果是使用统一的评估代码得到。[InternLM-7B](https://huggingface.co/internlm/internlm-7b) 汇报使用 [OpenCompass](https://opencompass.org.cn/rank) 工具评估的C-Eval平均值为 53.4,我们使用 OpenCompass 评估 InternLM-7B 的平均值为 51.6
157
 
158
- ## MMLU
159
 
160
  | Model 5-shot | STEM | Social Sciences | Humanities | Others | Average |
161
  |-------------------------|-------|-----------------|------------|--------|---------|
@@ -170,7 +165,7 @@ We conducted a `5-shot` evaluation under various benchmarks, using the same meth
170
  | **Baichuan-13B-Chat** | **40.9** | **60.9** | **48.8** | **59.0** | **52.1** |
171
 
172
 
173
- ## CMMLU
174
 
175
  | Model 5-shot | STEM | Humanities | Social Sciences | Others | China Specific | Average |
176
  |-------------------------|-------|------------|-----------------|--------|----------------|---------|
@@ -186,5 +181,5 @@ We conducted a `5-shot` evaluation under various benchmarks, using the same meth
186
 
187
  > 说明:CMMLU是一个综合性的中文评估基准,专门用于评估语言模型在中文语境下的知识和推理能力。我们采用了其官方的[评测方案](https://github.com/haonan-li/CMMLU)。
188
 
189
- ## Our Group
190
  ![WeChat](https://github.com/baichuan-inc/baichuan-7B/blob/main/media/wechat.jpeg?raw=true)
 
19
  3. **更高效的推理**:为了支持更广大用户的使用,我们本次同时开源了INT8和INT4的量化版本,在几乎没有效果损失的情况下可以很方便的将模型部署在如3090等消费机显卡上。
20
  4. **开源免费可商用**:Baichuan-13B不仅对学术研究完全开放,开发者也仅需邮件申请并获得官方商用许可后,即可以免费商用。
21
 
 
22
  Baichuan-13B-Chat is the aligned version in the Baichuan-13B series of models, and the pre-trained model can be found at [Baichuan-13B-Base](https://github.com/baichuan-inc/Baichuan-13B-Base).
23
 
24
  [Baichuan-13B](https://github.com/baichuan-inc/Baichuan-13B) is an open-source, commercially usable large-scale language model developed by Baichuan Intelligence, following [Baichuan-7B](https://github.com/baichuan-inc/baichuan-7B). With 13 billion parameters, it achieves the best performance in standard Chinese and English benchmarks among models of its size. This release includes two versions: pre-training (Baichuan-13B-Base) and alignment (Baichuan-13B-Chat). Baichuan-13B has the following features:
 
29
  4. **Open-source, free, and commercially usable**: Baichuan-13B is not only fully open to academic research, but developers can also use it for free commercially after applying for and receiving official commercial permission via email.
30
 
31
 
32
+ ## 使用方式
33
 
34
  如下是一个使用Baichuan-13B-Chat进行对话的示例,正确输出为"乔戈里峰。世界第二高峰———乔戈里峰西方登山者称其为k2峰,海拔高度是8611米,位于喀喇昆仑山脉的中巴边境上"
35
  ```python
 
59
  print(response)
60
  ```
61
 
62
+ ## 模型详情
63
 
64
+ ### 模型简述
65
 
66
  <!-- Provide a longer summary of what this model is. -->
67
 
 
70
  - **Language(s) (NLP):** Chinese/English
71
  - **License:** [Baichuan-13B License]()
72
 
73
+ ### 模型结构
74
 
75
  <!-- Provide the basic links for the model. -->
76
 
 
100
  | Baichuan-7B | 4,096 | 32 | 32 | 64,000 | 7,000,559,616 | 1.2万亿 | [RoPE](https://arxiv.org/abs/2104.09864) | 4,096 |
101
  | Baichuan-13B | 5,120 | 40 | 40 | 64,000 | 13,264,901,120 | 1.4万亿 | [ALiBi](https://arxiv.org/abs/2108.12409) | 4,096
102
 
103
+ ## 使用须知
104
 
105
  <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
106
 
107
+ ### 下游使用
108
 
109
  <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
110
  我们同时开源出了和本模型配套的训练代码,允许进行高效的Finetune用于下游任务,具体参见[Baichuan-13B](https://github.com/baichuan-inc/Baichuan-13B)。
111
 
112
  We have also open-sourced the training code that accompanies this model, allowing for efficient finetuning for downstream tasks. For more details, please refer to [Baichuan-13B](https://github.com/baichuan-inc/Baichuan-13B).
113
 
114
+ ### 注意事项
115
 
116
  <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
117
  在没有充分评估风险和采取缓解措施的情况下投入生产使用;任何可能被视为不负责任或有害的使用案例。
118
 
119
  Production use without adequate assessment of risks and mitigation; any use cases which may be considered irresponsible or harmful.
120
 
 
 
121
  <!-- This section is meant to convey both technical and sociotechnical limitations. -->
122
 
123
  Baichuan-13B可能会产生事实上不正确的输出,不应依赖它产生事实上准确的信息。Baichuan-13B是在各种公共数据集上进行训练的。尽管我们已经做出了巨大的努力来清洗预训练数据,但这个模型可能会生成淫秽、偏见或其他冒犯性的输出。
124
 
125
  Baichuan-13B can produce factually incorrect output, and should not be relied on to produce factually accurate information. Baichuan-13B was trained on various public datasets. While great efforts have been taken to clean the pretraining data, it is possible that this model could generate lewd, biased or otherwise offensive outputs.
126
 
127
+ ## 训练详情
128
 
129
  训练具体设置参见[Baichuan-13B](https://github.com/baichuan-inc/Baichuan-13B)。
130
 
131
  For specific training settings, please refer to [Baichuan-13B](https://github.com/baichuan-inc/Baichuan-13B).
132
 
133
+ ## 测评结果
 
 
134
 
135
  我们在各个 benchmark 下进行了`5-shot`评测,所采用的方法和 [Baichuan-7B](https://github.com/baichuan-inc/Baichuan-7B/) 项目中相同。结果如下���
136
 
137
  We conducted a `5-shot` evaluation under various benchmarks, using the same method as in the [Baichuan-7B](https://github.com/baichuan-inc/Baichuan-7B/) project. The results are as follows:
138
+ ### C-Eval
139
 
140
  | Model 5-shot | STEM | Social Sciences | Humanities | Others | Average |
141
  |-------------------------|-------|-----------------|------------|--------|---------|
 
150
  | **Baichuan-13B-Chat** | **43.7** | **64.6** | **56.2** | **49.2** | **51.5** |
151
  > *说明:表中各个模型的结果是使用统一的评估代码得到。[InternLM-7B](https://huggingface.co/internlm/internlm-7b) 汇报使用 [OpenCompass](https://opencompass.org.cn/rank) 工具评估的C-Eval平均值为 53.4,我们使用 OpenCompass 评估 InternLM-7B 的平均值为 51.6
152
 
153
+ ### MMLU
154
 
155
  | Model 5-shot | STEM | Social Sciences | Humanities | Others | Average |
156
  |-------------------------|-------|-----------------|------------|--------|---------|
 
165
  | **Baichuan-13B-Chat** | **40.9** | **60.9** | **48.8** | **59.0** | **52.1** |
166
 
167
 
168
+ ### CMMLU
169
 
170
  | Model 5-shot | STEM | Humanities | Social Sciences | Others | China Specific | Average |
171
  |-------------------------|-------|------------|-----------------|--------|----------------|---------|
 
181
 
182
  > 说明:CMMLU是一个综合性的中文评估基准,专门用于评估语言模型在中文语境下的知识和推理能力。我们采用了其官方的[评测方案](https://github.com/haonan-li/CMMLU)。
183
 
184
+ ## 微信群组
185
  ![WeChat](https://github.com/baichuan-inc/baichuan-7B/blob/main/media/wechat.jpeg?raw=true)