from transformers.configuration_utils import PretrainedConfig class BaichuanConfig(PretrainedConfig): model_type = "baichuan" keys_to_ignore_at_inference = ["past_key_values"] def __init__( self, vocab_size=64000, hidden_size=5120, intermediate_size=13696, num_hidden_layers=40, num_attention_heads=40, hidden_act="silu", model_max_length=4096, initializer_range=0.02, rms_norm_eps=1e-6, use_cache=True, pad_token_id=0, bos_token_id=1, eos_token_id=2, tie_word_embeddings=False, **kwargs, ): self.vocab_size = vocab_size self.model_max_length = model_max_length self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.initializer_range = initializer_range self.rms_norm_eps = rms_norm_eps self.use_cache = use_cache super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, )