# Copyright (c) 2023, Baichuan Intelligent Technology. All rights reserved. import math from typing import List, Optional, Tuple, Union import torch import torch.utils.checkpoint import torch.nn.functional as F from torch import nn from torch.nn import CrossEntropyLoss from transformers import PreTrainedModel from transformers.activations import ACT2FN from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast from transformers.utils import logging from transformers.generation.utils import GenerationConfig from .configuration_baichuan import BaichuanConfig logger = logging.get_logger(__name__) # Copied from transformers.models.bloom.modeling_bloom._make_causal_mask def _make_causal_mask( input_ids_shape: torch.Size, device: torch.device, past_key_values_length: int ) -> torch.BoolTensor: """ Make causal mask used for self-attention. """ batch_size, target_length = input_ids_shape mask = torch.empty((target_length, target_length + past_key_values_length), dtype=torch.bool, device=device) # ONNX doesn't support `torch.Tensor.triu` properly, thus we use this workaround seq_ids = torch.arange(target_length, device=device) mask[:, past_key_values_length:] = seq_ids[:, None] < seq_ids[None, :] if past_key_values_length > 0: mask[:, :past_key_values_length] = False expanded_mask = mask[None, None, :, :].expand(batch_size, 1, target_length, target_length + past_key_values_length) return expanded_mask # Copied from transformers.models.bloom.modeling_bloom._expand_mask def _expand_mask(mask: torch.Tensor, tgt_length: int) -> torch.BoolTensor: """ Expands attention_mask from `[batch_size, src_length]` to `[batch_size, 1, tgt_length, src_length]`. """ batch_size, src_length = mask.shape tgt_length = tgt_length if tgt_length is not None else src_length expanded_mask = ~(mask[:, None, None, :].to(torch.bool)) return expanded_mask.expand(batch_size, 1, tgt_length, src_length) # Copied from transformers.models.bloom.modeling_bloom.build_alibi_tensor def build_alibi_tensor(attention_mask: torch.Tensor, num_heads: int, dtype: torch.dtype) -> torch.Tensor: """ Link to paper: https://arxiv.org/abs/2108.12409 Alibi tensor is not causal as the original paper mentions, it relies on a translation invariance of softmax for quick implementation: with l being a tensor, and a fixed value `softmax(l+a) = softmax(l)`. Args: Returns tensor shaped (batch_size * num_heads, 1, max_seq_len) attention_mask (`torch.Tensor`): Token-wise attention mask, this should be of shape (batch_size, max_seq_len). num_heads (`int`, *required*): number of heads dtype (`torch.dtype`, *optional*, default=`torch.bfloat16`): dtype of the output tensor """ batch_size, seq_length = attention_mask.shape closest_power_of_2 = 2 ** math.floor(math.log2(num_heads)) base = torch.tensor( 2 ** (-(2 ** -(math.log2(closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32 ) powers = torch.arange(1, 1 + closest_power_of_2, device=attention_mask.device, dtype=torch.int32) slopes = torch.pow(base, powers) if closest_power_of_2 != num_heads: extra_base = torch.tensor( 2 ** (-(2 ** -(math.log2(2 * closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32 ) num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2) extra_powers = torch.arange(1, 1 + 2 * num_remaining_heads, 2, device=attention_mask.device, dtype=torch.int32) slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0) # Note: alibi will added to the attention bias that will be applied to the query, key product of attention # => therefore alibi will have to be of shape (batch_size, num_heads, query_length, key_length) # => here we set (batch_size=1, num_heads=num_heads, query_length=1, key_length=max_length) # => the query_length dimension will then be broadcasted correctly arange_tensor = ((attention_mask.cumsum(dim=-1) - 1) * attention_mask)[:, None, :] alibi = slopes[..., None] * arange_tensor return alibi.reshape(batch_size * num_heads, 1, seq_length).to(dtype) class RMSNorm(nn.Module): def __init__(self, hidden_size, epsilon=1e-6): super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.epsilon = epsilon def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: input_dtype = hidden_states.dtype variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.epsilon) return (self.weight * hidden_states).to(input_dtype) class MLP(nn.Module): def __init__( self, hidden_size: int, intermediate_size: int, hidden_act: str, ): super().__init__() self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False) self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False) self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False) self.act_fn = ACT2FN[hidden_act] def forward(self, x): return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) class BaichuanAttention(nn.Module): def __init__(self, config: BaichuanConfig): super().__init__() self.config = config self.hidden_size = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.hidden_size // self.num_heads self.max_position_embeddings = config.model_max_length if (self.head_dim * self.num_heads) != self.hidden_size: raise ValueError( f"hidden_size {self.hidden_size} is not divisible by num_heads {self.num_heads}" ) # Layer-wise attention scaling self.inv_norm_factor = 1.0 / math.sqrt(self.head_dim) self.beta = 1.0 self.W_pack = nn.Linear(self.hidden_size, 3 * self.hidden_size, bias=False) self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, alibi: torch.Tensor, attention_mask: torch.Tensor, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: bool = False, use_cache: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: bsz, q_len, _ = hidden_states.size() proj = self.W_pack(hidden_states) # [batch_size, seq_length, 3 x hidden_size] proj = proj.unflatten(-1, (3, self.hidden_size)).unsqueeze(0).transpose(0, -2).squeeze(-2) query_states = proj[0].view(bsz, q_len, self.num_heads, self.head_dim) key_states = proj[1].view(bsz, q_len, self.num_heads, self.head_dim) value_states = proj[2].view(bsz, q_len, self.num_heads, self.head_dim) query_states = query_states.transpose(1, 2).reshape(bsz * self.num_heads, q_len, self.head_dim) key_states = key_states.permute(0, 2, 3, 1).reshape(bsz * self.num_heads, self.head_dim, q_len) value_states = value_states.transpose(1, 2).reshape(bsz * self.num_heads, q_len, self.head_dim) if past_key_value is not None: # reuse k, v, self_attention past_key, past_value = past_key_value key_states = torch.cat([past_key, key_states], dim=2) value_states = torch.cat([past_value, value_states], dim=1) _, _, kv_seq_len = key_states.shape past_key_value = (key_states, value_states) if use_cache else None # [batch_size * num_heads, q_length, kv_length] # we use `torch.Tensor.baddbmm` instead of `torch.baddbmm` as the latter isn't supported by TorchScript v1.11 matmul_result = alibi.baddbmm( batch1=query_states, batch2=key_states, beta=self.beta, alpha=self.inv_norm_factor, ) # change view to [batch_size, num_heads, q_length, kv_length] attention_scores = matmul_result.view(bsz, self.num_heads, q_len, kv_seq_len) # cast attention scores to fp32, compute scaled softmax and cast back to initial dtype # [batch_size, num_heads, q_length, kv_length] input_dtype = attention_scores.dtype # `float16` has a minimum value of -65504.0, whereas `bfloat16` and `float32` have a minimum value of `-3.4e+38` if input_dtype == torch.float16: attention_scores = attention_scores.to(torch.float) attn_weights = torch.masked_fill(attention_scores, attention_mask, torch.finfo(attention_scores.dtype).min) attention_probs = F.softmax(attn_weights, dim=-1, dtype=torch.float32).to(input_dtype) # change view [batch_size x num_heads, q_length, kv_length] attention_probs_reshaped = attention_probs.view(bsz * self.num_heads, q_len, kv_seq_len) # matmul: [batch_size * num_heads, q_length, head_dim] attn_output = torch.bmm(attention_probs_reshaped, value_states) attn_output = attn_output.view(bsz, self.num_heads, q_len, self.head_dim) attn_output = attn_output.transpose(1, 2).reshape(bsz, q_len, self.hidden_size) attn_output = self.o_proj(attn_output) if not output_attentions: attention_probs = None return attn_output, attention_probs, past_key_value class BaichuanLayer(nn.Module): def __init__(self, config: BaichuanConfig): super().__init__() self.hidden_size = config.hidden_size self.self_attn = BaichuanAttention(config=config) self.mlp = MLP( hidden_size=self.hidden_size, intermediate_size=config.intermediate_size, hidden_act=config.hidden_act, ) self.input_layernorm = RMSNorm(config.hidden_size, epsilon=config.rms_norm_eps) self.post_attention_layernorm = RMSNorm(config.hidden_size, epsilon=config.rms_norm_eps) def forward( self, hidden_states: torch.Tensor, alibi: torch.Tensor, attention_mask: torch.Tensor, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, alibi=alibi, attention_mask=attention_mask, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) if use_cache: outputs += (present_key_value,) return outputs class BaichuanPreTrainedModel(PreTrainedModel): config_class = BaichuanConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["BaichuanLayer"] _skip_keys_device_placement = "past_key_values" _keys_to_ignore_on_load_unexpected = [r"decoder\.version"] def _init_weights(self, module): std = self.config.initializer_range if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, BaichuanModel): module.gradient_checkpointing = value @staticmethod def _convert_to_standard_cache( past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]], batch_size: int ) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]: """ Standardizes the format of the cache so as to match most implementations, i.e. to tuple(tuple([batch_size, num_heads, ...])) """ batch_size_times_num_heads, head_dim, seq_length = past_key_value[0][0].shape num_heads = batch_size_times_num_heads // batch_size # key: [batch_size * num_heads, head_dim, seq_length] -> [batch_size, num_heads, head_dim, seq_length] # value: [batch_size * num_heads, seq_length, head_dim] -> [batch_size, num_heads, seq_length, head_dim] return tuple( ( layer_past[0].view(batch_size, num_heads, head_dim, seq_length), layer_past[1].view(batch_size, num_heads, seq_length, head_dim), ) for layer_past in past_key_value ) @staticmethod def _convert_to_baichuan_cache( past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]] ) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]: """ Converts the cache to the format expected by Baichuan, i.e. to tuple(tuple([batch_size * num_heads, ...])) """ batch_size, num_heads, head_dim, seq_length = past_key_value[0][0].shape batch_size_times_num_heads = batch_size * num_heads # key: [batch_size, num_heads, head_dim, seq_length] -> [batch_size * num_heads, head_dim, seq_length] # value: [batch_size, num_heads, seq_length, head_dim] -> [batch_size * num_heads, seq_length, head_dim] return tuple( ( layer_past[0].view(batch_size_times_num_heads, head_dim, seq_length), layer_past[1].view(batch_size_times_num_heads, seq_length, head_dim), ) for layer_past in past_key_value ) class BaichuanModel(BaichuanPreTrainedModel): def __init__(self, config: BaichuanConfig): super().__init__(config) self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.n_head = config.num_attention_heads self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) self.layers = nn.ModuleList([BaichuanLayer(config) for _ in range(config.num_hidden_layers)]) self.norm = RMSNorm(config.hidden_size, epsilon=config.rms_norm_eps) self.gradient_checkpointing = config.gradient_checkpointing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value def build_alibi_tensor(self, attention_mask: torch.Tensor, num_heads: int, dtype: torch.dtype) -> torch.Tensor: return build_alibi_tensor(attention_mask, num_heads, dtype) def _prepare_attn_mask( self, attention_mask: torch.Tensor, input_shape: Tuple[int, int], past_key_values_length: int ) -> torch.BoolTensor: # create causal mask # [batch_size, seq_length] -> [batch_size, 1, tgt_length, src_length] combined_attention_mask = None device = attention_mask.device _, src_length = input_shape if src_length > 1: combined_attention_mask = _make_causal_mask( input_shape, device=device, past_key_values_length=past_key_values_length ) # [batch_size, seq_length] -> [batch_size, 1, tgt_length, src_length] expanded_attn_mask = _expand_mask(attention_mask, tgt_length=src_length) combined_attention_mask = ( expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask | combined_attention_mask ) return combined_attention_mask def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot provide both input_ids and inputs_embeds simultaneously") elif input_ids is not None: batch_size, seq_length = input_ids.shape elif inputs_embeds is not None: batch_size, seq_length, _ = inputs_embeds.shape else: raise ValueError("You need to provide input_ids or inputs_embeds") seq_length_with_past = seq_length past_key_values_length = 0 if past_key_values is not None: past_key_values_length = past_key_values[0][0].shape[1] seq_length_with_past = seq_length_with_past + past_key_values_length if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) hidden_states = inputs_embeds if attention_mask is None: attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device) else: attention_mask = attention_mask.to(hidden_states.device) if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False # Compute alibi tensor: check build_alibi_tensor documentation alibi = self.build_alibi_tensor(attention_mask, self.n_head, dtype=hidden_states.dtype) causal_mask = self._prepare_attn_mask( attention_mask, input_shape=(batch_size, seq_length), past_key_values_length=past_key_values_length, ) # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None next_decoder_cache = () if use_cache else None for idx, decoder_layer in enumerate(self.layers): if output_hidden_states: all_hidden_states += (hidden_states,) past_key_value = past_key_values[idx] if past_key_values is not None else None if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): # None for past_key_value return module(*inputs, output_attentions, None) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(decoder_layer), hidden_states, alibi, causal_mask, None, ) else: layer_outputs = decoder_layer( hidden_states, alibi=alibi, attention_mask=causal_mask, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) if output_attentions: all_self_attns += (layer_outputs[1],) hidden_states = self.norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = next_decoder_cache if use_cache else None if not return_dict: return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, ) class BaichuanForCausalLM(BaichuanPreTrainedModel): def __init__(self, config): super().__init__(config) self.model = BaichuanModel(config) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def set_decoder(self, decoder): self.model = decoder def get_decoder(self): return self.model def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs ) -> Union[Tuple, CausalLMOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] logits = self.lm_head(hidden_states) loss = None if labels is not None: # Shift so that tokens < n predict n shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() shift_logits = shift_logits.view(-1, self.config.vocab_size) shift_labels = shift_labels.view(-1) # Enable model parallelism shift_labels = shift_labels.to(shift_logits.device) loss = loss_fct(shift_logits, shift_labels) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def prepare_inputs_for_generation( self, input_ids: torch.LongTensor, past_key_values: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, **kwargs ) -> dict: if past_key_values: input_ids = input_ids[:, -1:] # the cache may be in the standard format (e.g. in contrastive search) if past_key_values[0][0].shape[0] == input_ids.shape[0]: past_key_values = self._convert_to_baichuan_cache(past_key_values) # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and past_key_values is None: model_inputs = {"inputs_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids} model_inputs.update( { "past_key_values": past_key_values, "use_cache": kwargs.get("use_cache"), "attention_mask": attention_mask, } ) return model_inputs def _reorder_cache( self, past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor ) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]: """ This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct beam_idx at every generation step. Output shares the same memory storage as `past`. """ standardized_past = self._convert_to_standard_cache(past, batch_size=len(beam_idx)) # Get a copy of `beam_idx` on all the devices where we need those indices. device_to_beam_idx = { past_state.device: beam_idx.to(past_state.device) for layer_past in past for past_state in layer_past } reordered_past = tuple( ( layer_past[0].index_select(0, device_to_beam_idx[layer_past[0].device]), layer_past[1].index_select(0, device_to_beam_idx[layer_past[0].device]), ) for layer_past in standardized_past ) return self._convert_to_baichuan_cache(reordered_past) def quantize(self, bits: int): try: from .quantizer import QLinear except ImportError: raise ImportError( f"Needs QLinear to run quantize." ) for layer in self.model.layers: layer.self_attn.W_pack = QLinear( bits=bits, weight=layer.self_attn.W_pack.weight, bias = None, ) layer.self_attn.o_proj = QLinear( bits=bits, weight=layer.self_attn.o_proj.weight, bias = None, ) layer.mlp.gate_proj = QLinear( bits=bits, weight=layer.mlp.gate_proj.weight, bias = None, ) layer.mlp.down_proj = QLinear( bits=bits, weight=layer.mlp.down_proj.weight, bias = None, ) layer.mlp.up_proj = QLinear( bits=bits, weight=layer.mlp.up_proj.weight, bias = None, ) return self def _build_chat_input(self, tokenizer, messages: List[dict], max_new_tokens: int=0): max_new_tokens = max_new_tokens or self.generation_config.max_new_tokens max_input_tokens = self.config.model_max_length - max_new_tokens max_input_tokens = max(self.config.model_max_length // 2, max_input_tokens) total_input, round_input = [], [] for i, message in enumerate(messages[::-1]): content_tokens = tokenizer.encode(message['content']) if message['role'] == 'user': round_input = [self.generation_config.user_token_id] + content_tokens + round_input if total_input and len(total_input) + len(round_input) > max_input_tokens: break else: total_input = round_input + total_input if len(total_input) >= max_input_tokens: break else: round_input = [] elif message['role'] == 'assistant': round_input = [ self.generation_config.assistant_token_id ] + content_tokens + [ self.generation_config.eos_token_id ] + round_input else: raise ValueError(f"message role not supported yet: {message['role']}") total_input = total_input[-max_input_tokens:] # truncate left total_input.append(self.generation_config.assistant_token_id) total_input = torch.LongTensor([total_input]).to(self.device) return total_input @torch.no_grad() def chat(self, tokenizer, messages: List[dict], stream=False, generation_config: Optional[GenerationConfig]=None): generation_config = generation_config or self.generation_config input_ids = self._build_chat_input(tokenizer, messages, generation_config.max_new_tokens) if stream: from transformers_stream_generator.main import NewGenerationMixin, StreamGenerationConfig self.__class__.generate = NewGenerationMixin.generate self.__class__.sample_stream = NewGenerationMixin.sample_stream stream_config = StreamGenerationConfig(**generation_config.to_dict(), do_stream=True) def stream_generator(): outputs = [] for token in self.generate(input_ids, generation_config=stream_config): outputs.append(token.item()) yield tokenizer.decode(outputs, skip_special_tokens=True) return stream_generator() else: self.__class__.generate = PreTrainedModel.generate # disable stream outputs = self.generate(input_ids, generation_config=generation_config) response = tokenizer.decode(outputs[0][len(input_ids[0]):], skip_special_tokens=True) return response