add: add remote code
Browse files- configuration_baichuan.py +43 -0
- modeling_baichuan.py +514 -0
- quantizer.py +24 -0
- tokenization_baichuan.py +231 -0
configuration_baichuan.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from transformers.configuration_utils import PretrainedConfig
|
3 |
+
|
4 |
+
class BaichuanConfig(PretrainedConfig):
|
5 |
+
model_type = "baichuan"
|
6 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
7 |
+
|
8 |
+
def __init__(
|
9 |
+
self,
|
10 |
+
vocab_size=64000,
|
11 |
+
hidden_size=5120,
|
12 |
+
intermediate_size=13696,
|
13 |
+
num_hidden_layers=40,
|
14 |
+
num_attention_heads=40,
|
15 |
+
hidden_act="silu",
|
16 |
+
model_max_length=4096,
|
17 |
+
initializer_range=0.02,
|
18 |
+
rms_norm_eps=1e-6,
|
19 |
+
use_cache=True,
|
20 |
+
pad_token_id=0,
|
21 |
+
bos_token_id=1,
|
22 |
+
eos_token_id=2,
|
23 |
+
tie_word_embeddings=False,
|
24 |
+
**kwargs,
|
25 |
+
):
|
26 |
+
self.vocab_size = vocab_size
|
27 |
+
self.model_max_length = model_max_length
|
28 |
+
self.hidden_size = hidden_size
|
29 |
+
self.intermediate_size = intermediate_size
|
30 |
+
self.num_hidden_layers = num_hidden_layers
|
31 |
+
self.num_attention_heads = num_attention_heads
|
32 |
+
self.hidden_act = hidden_act
|
33 |
+
self.initializer_range = initializer_range
|
34 |
+
self.rms_norm_eps = rms_norm_eps
|
35 |
+
self.use_cache = use_cache
|
36 |
+
super().__init__(
|
37 |
+
pad_token_id=pad_token_id,
|
38 |
+
bos_token_id=bos_token_id,
|
39 |
+
eos_token_id=eos_token_id,
|
40 |
+
tie_word_embeddings=tie_word_embeddings,
|
41 |
+
**kwargs,
|
42 |
+
)
|
43 |
+
|
modeling_baichuan.py
ADDED
@@ -0,0 +1,514 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from typing import List, Optional, Tuple, Union
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch.nn import CrossEntropyLoss
|
6 |
+
from transformers import PreTrainedModel
|
7 |
+
from transformers.activations import ACT2FN
|
8 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
9 |
+
from transformers.utils import logging
|
10 |
+
|
11 |
+
from .configuration_baichuan import BaichuanConfig
|
12 |
+
|
13 |
+
logger = logging.get_logger(__name__)
|
14 |
+
|
15 |
+
def _get_slopes(n):
|
16 |
+
def _get_slopes_power_of_2(n):
|
17 |
+
start = (2 ** (-2 ** -(math.log2(n) - 3)))
|
18 |
+
ratio = start
|
19 |
+
return [start * ratio ** i for i in range(n)]
|
20 |
+
|
21 |
+
if math.log2(n).is_integer():
|
22 |
+
return _get_slopes_power_of_2(n)
|
23 |
+
else:
|
24 |
+
closest_power_of_2 = 2 ** math.floor(math.log2(n))
|
25 |
+
return _get_slopes_power_of_2(closest_power_of_2) + \
|
26 |
+
_get_slopes(2 * closest_power_of_2)[0::2][:n - closest_power_of_2]
|
27 |
+
|
28 |
+
def _fill_with_neg_inf(t):
|
29 |
+
"""FP16-compatible function that fills a tensor with -inf."""
|
30 |
+
return t.float().fill_(float("-inf")).type_as(t)
|
31 |
+
|
32 |
+
def _gen_alibi_mask(n_head, max_pos):
|
33 |
+
slopes = torch.Tensor(_get_slopes(n_head))
|
34 |
+
alibi = slopes.unsqueeze(1).unsqueeze(1) * torch.arange(max_pos).unsqueeze(0).unsqueeze(0).expand(
|
35 |
+
n_head, -1, -1)
|
36 |
+
alibi = alibi.view(n_head, 1, max_pos)
|
37 |
+
alibi_mask = torch.triu(
|
38 |
+
_fill_with_neg_inf(torch.zeros([max_pos, max_pos])), 1
|
39 |
+
)
|
40 |
+
alibi_mask = alibi_mask.unsqueeze(0) + alibi
|
41 |
+
return alibi_mask
|
42 |
+
|
43 |
+
|
44 |
+
class RMSNorm(torch.nn.Module):
|
45 |
+
def __init__(self, hidden_size, epsilon=1e-6):
|
46 |
+
super().__init__()
|
47 |
+
self.weight = torch.nn.Parameter(torch.empty(hidden_size))
|
48 |
+
self.epsilon = epsilon
|
49 |
+
|
50 |
+
def forward(self, hidden_states):
|
51 |
+
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
|
52 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.epsilon)
|
53 |
+
|
54 |
+
# convert into half-precision
|
55 |
+
if self.weight.dtype in [torch.float16, torch.bfloat16]:
|
56 |
+
hidden_states = hidden_states.to(self.weight.dtype)
|
57 |
+
|
58 |
+
return self.weight * hidden_states
|
59 |
+
|
60 |
+
|
61 |
+
class MLP(torch.nn.Module):
|
62 |
+
def __init__(
|
63 |
+
self,
|
64 |
+
hidden_size: int,
|
65 |
+
intermediate_size: int,
|
66 |
+
hidden_act: str,
|
67 |
+
):
|
68 |
+
super().__init__()
|
69 |
+
self.gate_proj = torch.nn.Linear(hidden_size, intermediate_size, bias=False)
|
70 |
+
self.down_proj = torch.nn.Linear(intermediate_size, hidden_size, bias=False)
|
71 |
+
self.up_proj = torch.nn.Linear(hidden_size, intermediate_size, bias=False)
|
72 |
+
self.act_fn = ACT2FN[hidden_act]
|
73 |
+
|
74 |
+
def forward(self, x):
|
75 |
+
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
76 |
+
|
77 |
+
|
78 |
+
class BaichuanAttention(torch.nn.Module):
|
79 |
+
|
80 |
+
def __init__(self, config: BaichuanConfig):
|
81 |
+
super().__init__()
|
82 |
+
self.config = config
|
83 |
+
self.hidden_size = config.hidden_size
|
84 |
+
self.num_heads = config.num_attention_heads
|
85 |
+
self.head_dim = self.hidden_size // self.num_heads
|
86 |
+
self.max_position_embeddings = config.model_max_length
|
87 |
+
|
88 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
89 |
+
raise ValueError(
|
90 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
91 |
+
f" and `num_heads`: {self.num_heads})."
|
92 |
+
)
|
93 |
+
self.W_pack = torch.nn.Linear(self.hidden_size, 3 * self.hidden_size, bias=False)
|
94 |
+
self.o_proj = torch.nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
95 |
+
|
96 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
97 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
98 |
+
|
99 |
+
def forward(
|
100 |
+
self,
|
101 |
+
hidden_states: torch.Tensor,
|
102 |
+
attention_mask: Optional[torch.Tensor] = None,
|
103 |
+
position_ids: Optional[torch.LongTensor] = None,
|
104 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
105 |
+
output_attentions: bool = False,
|
106 |
+
use_cache: bool = False,
|
107 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
108 |
+
|
109 |
+
bsz, q_len, _ = hidden_states.size()
|
110 |
+
|
111 |
+
proj = self.W_pack(hidden_states)
|
112 |
+
proj = proj.unflatten(-1, (3, self.hidden_size)).unsqueeze(0).transpose(0, -2).squeeze(-2)
|
113 |
+
query_states = proj[0].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
114 |
+
key_states = proj[1].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
115 |
+
value_states = proj[2].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
116 |
+
|
117 |
+
kv_seq_len = key_states.shape[-2]
|
118 |
+
if past_key_value is not None:
|
119 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
120 |
+
|
121 |
+
if past_key_value is not None:
|
122 |
+
# reuse k, v, self_attention
|
123 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
124 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
125 |
+
|
126 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
127 |
+
|
128 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
129 |
+
|
130 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
131 |
+
raise ValueError(
|
132 |
+
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
133 |
+
f" {attn_weights.size()}"
|
134 |
+
)
|
135 |
+
|
136 |
+
if attention_mask is not None:
|
137 |
+
if attn_weights.size(-2) == 1:
|
138 |
+
attention_mask = attention_mask[:, -1:, :]
|
139 |
+
attn_weights = attn_weights + attention_mask.unsqueeze(0)
|
140 |
+
attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min))
|
141 |
+
|
142 |
+
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1)
|
143 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
144 |
+
|
145 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
146 |
+
raise ValueError(
|
147 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
148 |
+
f" {attn_output.size()}"
|
149 |
+
)
|
150 |
+
|
151 |
+
attn_output = attn_output.transpose(1, 2)
|
152 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
153 |
+
attn_output = self.o_proj(attn_output)
|
154 |
+
|
155 |
+
if not output_attentions:
|
156 |
+
attn_weights = None
|
157 |
+
|
158 |
+
return attn_output, attn_weights, past_key_value
|
159 |
+
|
160 |
+
|
161 |
+
class BaichuanLayer(torch.nn.Module):
|
162 |
+
def __init__(self, config: BaichuanConfig):
|
163 |
+
super().__init__()
|
164 |
+
self.hidden_size = config.hidden_size
|
165 |
+
self.self_attn = BaichuanAttention(config=config)
|
166 |
+
self.mlp = MLP(
|
167 |
+
hidden_size=self.hidden_size,
|
168 |
+
intermediate_size=config.intermediate_size,
|
169 |
+
hidden_act=config.hidden_act,
|
170 |
+
)
|
171 |
+
self.input_layernorm = RMSNorm(config.hidden_size, epsilon=config.rms_norm_eps)
|
172 |
+
self.post_attention_layernorm = RMSNorm(config.hidden_size, epsilon=config.rms_norm_eps)
|
173 |
+
|
174 |
+
def forward(
|
175 |
+
self,
|
176 |
+
hidden_states: torch.Tensor,
|
177 |
+
attention_mask: Optional[torch.Tensor] = None,
|
178 |
+
position_ids: Optional[torch.LongTensor] = None,
|
179 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
180 |
+
output_attentions: Optional[bool] = False,
|
181 |
+
use_cache: Optional[bool] = False,
|
182 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
183 |
+
|
184 |
+
residual = hidden_states
|
185 |
+
|
186 |
+
hidden_states = self.input_layernorm(hidden_states)
|
187 |
+
|
188 |
+
# Self Attention
|
189 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
190 |
+
hidden_states=hidden_states,
|
191 |
+
attention_mask=attention_mask,
|
192 |
+
position_ids=position_ids,
|
193 |
+
past_key_value=past_key_value,
|
194 |
+
output_attentions=output_attentions,
|
195 |
+
use_cache=use_cache,
|
196 |
+
)
|
197 |
+
hidden_states = residual + hidden_states
|
198 |
+
|
199 |
+
# Fully Connected
|
200 |
+
residual = hidden_states
|
201 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
202 |
+
hidden_states = self.mlp(hidden_states)
|
203 |
+
hidden_states = residual + hidden_states
|
204 |
+
|
205 |
+
outputs = (hidden_states,)
|
206 |
+
|
207 |
+
if use_cache:
|
208 |
+
outputs += (present_key_value,)
|
209 |
+
|
210 |
+
return outputs
|
211 |
+
|
212 |
+
|
213 |
+
class BaichuanPreTrainedModel(PreTrainedModel):
|
214 |
+
config_class = BaichuanConfig
|
215 |
+
base_model_prefix = "model"
|
216 |
+
supports_gradient_checkpointing = True
|
217 |
+
_no_split_modules = ["BaichuanLayer"]
|
218 |
+
_keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
|
219 |
+
|
220 |
+
def _init_weights(self, module):
|
221 |
+
std = self.config.initializer_range
|
222 |
+
if isinstance(module, torch.nn.Linear):
|
223 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
224 |
+
if module.bias is not None:
|
225 |
+
module.bias.data.zero_()
|
226 |
+
elif isinstance(module, torch.nn.Embedding):
|
227 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
228 |
+
if module.padding_idx is not None:
|
229 |
+
module.weight.data[module.padding_idx].zero_()
|
230 |
+
|
231 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
232 |
+
if isinstance(module, BaichuanModel):
|
233 |
+
module.gradient_checkpointing = value
|
234 |
+
|
235 |
+
|
236 |
+
|
237 |
+
class BaichuanModel(BaichuanPreTrainedModel):
|
238 |
+
def __init__(self, config: BaichuanConfig):
|
239 |
+
super().__init__(config)
|
240 |
+
self.padding_idx = config.pad_token_id
|
241 |
+
self.vocab_size = config.vocab_size
|
242 |
+
self.n_head = config.num_attention_heads
|
243 |
+
self.embed_tokens = torch.nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
244 |
+
self.layers = torch.nn.ModuleList([BaichuanLayer(config) for _ in range(config.num_hidden_layers)])
|
245 |
+
self.norm = RMSNorm(config.hidden_size, epsilon=config.rms_norm_eps)
|
246 |
+
|
247 |
+
self.gradient_checkpointing = False
|
248 |
+
self.post_init()
|
249 |
+
self.max_cache_pos = config.model_max_length
|
250 |
+
self.first_run = True
|
251 |
+
|
252 |
+
def get_alibi_mask(self, tensor, seq_length_with_past):
|
253 |
+
if self.first_run:
|
254 |
+
self.first_run = False
|
255 |
+
self.register_buffer("future_mask", _gen_alibi_mask(self.n_head, self.max_cache_pos).to(tensor), persistent=False)
|
256 |
+
if (seq_length_with_past > self.max_cache_pos):
|
257 |
+
self.max_cache_pos = seq_length_with_past
|
258 |
+
self.register_buffer("future_mask", _gen_alibi_mask(self.n_head, self.max_cache_pos).to(tensor), persistent=False)
|
259 |
+
mask = self.future_mask[:self.n_head, :seq_length_with_past, :seq_length_with_past]
|
260 |
+
return mask
|
261 |
+
|
262 |
+
def forward(
|
263 |
+
self,
|
264 |
+
input_ids: torch.LongTensor = None,
|
265 |
+
attention_mask: Optional[torch.Tensor] = None,
|
266 |
+
position_ids: Optional[torch.LongTensor] = None,
|
267 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
268 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
269 |
+
use_cache: Optional[bool] = False,
|
270 |
+
output_attentions: Optional[bool] = False,
|
271 |
+
output_hidden_states: Optional[bool] = False,
|
272 |
+
return_dict: Optional[bool] = True,
|
273 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
274 |
+
|
275 |
+
|
276 |
+
# retrieve input_ids and inputs_embeds
|
277 |
+
if input_ids is not None and inputs_embeds is not None:
|
278 |
+
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
279 |
+
elif input_ids is not None:
|
280 |
+
batch_size, seq_length = input_ids.shape
|
281 |
+
elif inputs_embeds is not None:
|
282 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
283 |
+
else:
|
284 |
+
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
285 |
+
|
286 |
+
seq_length_with_past = seq_length
|
287 |
+
past_key_values_length = 0
|
288 |
+
|
289 |
+
if past_key_values is not None:
|
290 |
+
past_key_values_length = past_key_values[0][0].shape[2]
|
291 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
292 |
+
|
293 |
+
if position_ids is None:
|
294 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
295 |
+
position_ids = torch.arange(
|
296 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
297 |
+
)
|
298 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
299 |
+
else:
|
300 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
301 |
+
|
302 |
+
if inputs_embeds is None:
|
303 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
304 |
+
# embed positions
|
305 |
+
attention_mask = self.get_alibi_mask(inputs_embeds, seq_length_with_past)
|
306 |
+
|
307 |
+
hidden_states = inputs_embeds
|
308 |
+
|
309 |
+
if self.gradient_checkpointing and self.training:
|
310 |
+
if use_cache:
|
311 |
+
logger.warning_once(
|
312 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
313 |
+
)
|
314 |
+
use_cache = False
|
315 |
+
|
316 |
+
# decoder layers
|
317 |
+
all_hidden_states = () if output_hidden_states else None
|
318 |
+
all_self_attns = () if output_attentions else None
|
319 |
+
next_decoder_cache = () if use_cache else None
|
320 |
+
|
321 |
+
for idx, decoder_layer in enumerate(self.layers):
|
322 |
+
if output_hidden_states:
|
323 |
+
all_hidden_states += (hidden_states,)
|
324 |
+
|
325 |
+
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
326 |
+
|
327 |
+
if self.gradient_checkpointing and self.training:
|
328 |
+
|
329 |
+
def create_custom_forward(module):
|
330 |
+
def custom_forward(*inputs):
|
331 |
+
# None for past_key_value
|
332 |
+
return module(*inputs, output_attentions, None)
|
333 |
+
|
334 |
+
return custom_forward
|
335 |
+
|
336 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
337 |
+
create_custom_forward(decoder_layer),
|
338 |
+
hidden_states,
|
339 |
+
attention_mask,
|
340 |
+
position_ids,
|
341 |
+
None,
|
342 |
+
)
|
343 |
+
else:
|
344 |
+
layer_outputs = decoder_layer(
|
345 |
+
hidden_states,
|
346 |
+
attention_mask=attention_mask,
|
347 |
+
position_ids=position_ids,
|
348 |
+
past_key_value=past_key_value,
|
349 |
+
output_attentions=output_attentions,
|
350 |
+
use_cache=use_cache,
|
351 |
+
)
|
352 |
+
|
353 |
+
hidden_states = layer_outputs[0]
|
354 |
+
|
355 |
+
if use_cache:
|
356 |
+
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
357 |
+
|
358 |
+
if output_attentions:
|
359 |
+
all_self_attns += (layer_outputs[1],)
|
360 |
+
|
361 |
+
hidden_states = self.norm(hidden_states)
|
362 |
+
|
363 |
+
# add hidden states from the last decoder layer
|
364 |
+
if output_hidden_states:
|
365 |
+
all_hidden_states += (hidden_states,)
|
366 |
+
|
367 |
+
next_cache = next_decoder_cache if use_cache else None
|
368 |
+
if not return_dict:
|
369 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
370 |
+
return BaseModelOutputWithPast(
|
371 |
+
last_hidden_state=hidden_states,
|
372 |
+
past_key_values=next_cache,
|
373 |
+
hidden_states=all_hidden_states,
|
374 |
+
attentions=all_self_attns,
|
375 |
+
)
|
376 |
+
|
377 |
+
|
378 |
+
class BaichuanForCausalLM(BaichuanPreTrainedModel):
|
379 |
+
def __init__(self, config):
|
380 |
+
super().__init__(config)
|
381 |
+
self.model = BaichuanModel(config)
|
382 |
+
self.lm_head = torch.nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
383 |
+
|
384 |
+
# Initialize weights and apply final processing
|
385 |
+
self.post_init()
|
386 |
+
|
387 |
+
def forward(
|
388 |
+
self,
|
389 |
+
input_ids: torch.LongTensor = None,
|
390 |
+
attention_mask: Optional[torch.Tensor] = None,
|
391 |
+
position_ids: Optional[torch.LongTensor] = None,
|
392 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
393 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
394 |
+
labels: Optional[torch.LongTensor] = None,
|
395 |
+
use_cache: Optional[bool] = None,
|
396 |
+
output_attentions: Optional[bool] = False,
|
397 |
+
output_hidden_states: Optional[bool] = False,
|
398 |
+
return_dict: Optional[bool] = True,
|
399 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
400 |
+
|
401 |
+
|
402 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
403 |
+
outputs = self.model(
|
404 |
+
input_ids=input_ids,
|
405 |
+
attention_mask=attention_mask,
|
406 |
+
position_ids=position_ids,
|
407 |
+
past_key_values=past_key_values,
|
408 |
+
inputs_embeds=inputs_embeds,
|
409 |
+
use_cache=use_cache,
|
410 |
+
output_attentions=output_attentions,
|
411 |
+
output_hidden_states=output_hidden_states,
|
412 |
+
return_dict=return_dict,
|
413 |
+
)
|
414 |
+
|
415 |
+
hidden_states = outputs[0]
|
416 |
+
logits = self.lm_head(hidden_states)
|
417 |
+
|
418 |
+
loss = None
|
419 |
+
if labels is not None:
|
420 |
+
# Shift so that tokens < n predict n
|
421 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
422 |
+
shift_labels = labels[..., 1:].contiguous()
|
423 |
+
# Flatten the tokens
|
424 |
+
loss_fct = CrossEntropyLoss()
|
425 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
426 |
+
shift_labels = shift_labels.view(-1)
|
427 |
+
# Enable model parallelism
|
428 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
429 |
+
loss = loss_fct(shift_logits, shift_labels)
|
430 |
+
|
431 |
+
if not return_dict:
|
432 |
+
output = (logits,) + outputs[1:]
|
433 |
+
return (loss,) + output if loss is not None else output
|
434 |
+
|
435 |
+
return CausalLMOutputWithPast(
|
436 |
+
loss=loss,
|
437 |
+
logits=logits,
|
438 |
+
past_key_values=outputs.past_key_values,
|
439 |
+
hidden_states=outputs.hidden_states,
|
440 |
+
attentions=outputs.attentions,
|
441 |
+
)
|
442 |
+
|
443 |
+
def prepare_inputs_for_generation(
|
444 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
445 |
+
):
|
446 |
+
if past_key_values:
|
447 |
+
input_ids = input_ids[:, -1:]
|
448 |
+
|
449 |
+
position_ids = kwargs.get("position_ids", None)
|
450 |
+
if attention_mask is not None and position_ids is None:
|
451 |
+
# create position_ids on the fly for batch generation
|
452 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
453 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
454 |
+
if past_key_values:
|
455 |
+
position_ids = position_ids[:, -1].unsqueeze(-1)
|
456 |
+
|
457 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
458 |
+
if inputs_embeds is not None and past_key_values is None:
|
459 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
460 |
+
else:
|
461 |
+
model_inputs = {"input_ids": input_ids}
|
462 |
+
|
463 |
+
model_inputs.update(
|
464 |
+
{
|
465 |
+
"position_ids": position_ids,
|
466 |
+
"past_key_values": past_key_values,
|
467 |
+
"use_cache": kwargs.get("use_cache"),
|
468 |
+
"attention_mask": attention_mask,
|
469 |
+
}
|
470 |
+
)
|
471 |
+
return model_inputs
|
472 |
+
|
473 |
+
@staticmethod
|
474 |
+
def _reorder_cache(past_key_values, beam_idx):
|
475 |
+
return tuple(
|
476 |
+
tuple(past_state.index_select(0, beam_idx) for past_state in layer_past)
|
477 |
+
for layer_past in past_key_values
|
478 |
+
)
|
479 |
+
|
480 |
+
def quantize(self, bits: int):
|
481 |
+
try:
|
482 |
+
from .quantizer import QLinear
|
483 |
+
except ImportError:
|
484 |
+
raise ImportError(
|
485 |
+
f"Error: Needs QLinear to run quantize."
|
486 |
+
)
|
487 |
+
|
488 |
+
for layer in self.model.layers:
|
489 |
+
layer.self_attn.W_pack = QLinear(
|
490 |
+
bits=bits,
|
491 |
+
weight=layer.self_attn.W_pack.weight,
|
492 |
+
bias = None,
|
493 |
+
)
|
494 |
+
layer.self_attn.o_proj = QLinear(
|
495 |
+
bits=bits,
|
496 |
+
weight=layer.self_attn.o_proj.weight,
|
497 |
+
bias = None,
|
498 |
+
)
|
499 |
+
layer.mlp.gate_proj = QLinear(
|
500 |
+
bits=bits,
|
501 |
+
weight=layer.mlp.gate_proj.weight,
|
502 |
+
bias = None,
|
503 |
+
)
|
504 |
+
layer.mlp.down_proj = QLinear(
|
505 |
+
bits=bits,
|
506 |
+
weight=layer.mlp.down_proj.weight,
|
507 |
+
bias = None,
|
508 |
+
)
|
509 |
+
layer.mlp.up_proj = QLinear(
|
510 |
+
bits=bits,
|
511 |
+
weight=layer.mlp.up_proj.weight,
|
512 |
+
bias = None,
|
513 |
+
)
|
514 |
+
return self
|
quantizer.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
class QLinear(torch.nn.Module):
|
4 |
+
def __init__(self, bits: int, weight: torch.Tensor, bias=None):
|
5 |
+
super().__init__()
|
6 |
+
self.quant_bits = bits
|
7 |
+
if self.quant_bits != 8:
|
8 |
+
raise ValueError(
|
9 |
+
f'Only supprt int8 quant in current version'
|
10 |
+
)
|
11 |
+
self.scale = weight.abs().max(dim=-1).values / ((2 ** (bits - 1)) - 1)
|
12 |
+
self.weight = torch.round(weight / self.scale[:, None]).to(torch.int8)
|
13 |
+
self.weight = self.weight.T
|
14 |
+
self.bias = None
|
15 |
+
|
16 |
+
def forward(self, input):
|
17 |
+
if self.weight.device != input.device:
|
18 |
+
self.weight = self.weight.to(input.device)
|
19 |
+
self.scale = self.scale.to(input.device)
|
20 |
+
|
21 |
+
output = torch.matmul(input, self.weight.to(input.dtype)) * self.scale.to(input.dtype)[None,None, :]
|
22 |
+
if self.bias is not None:
|
23 |
+
output = output + self.bias
|
24 |
+
return output
|
tokenization_baichuan.py
ADDED
@@ -0,0 +1,231 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from shutil import copyfile
|
3 |
+
from typing import Any, Dict, List, Optional, Tuple
|
4 |
+
|
5 |
+
import sentencepiece as spm
|
6 |
+
|
7 |
+
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
|
8 |
+
from transformers.utils import logging
|
9 |
+
|
10 |
+
|
11 |
+
logger = logging.get_logger(__name__)
|
12 |
+
|
13 |
+
VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
|
14 |
+
|
15 |
+
PRETRAINED_VOCAB_FILES_MAP = {
|
16 |
+
"vocab_file": {},
|
17 |
+
"tokenizer_file": {},
|
18 |
+
}
|
19 |
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {}
|
20 |
+
|
21 |
+
|
22 |
+
class BaichuanTokenizer(PreTrainedTokenizer):
|
23 |
+
"""
|
24 |
+
Construct a Baichuan tokenizer. Based on byte-level Byte-Pair-Encoding.
|
25 |
+
|
26 |
+
Args:
|
27 |
+
vocab_file (`str`):
|
28 |
+
Path to the vocabulary file.
|
29 |
+
"""
|
30 |
+
|
31 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
32 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
33 |
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
34 |
+
model_input_names = ["input_ids", "attention_mask"]
|
35 |
+
|
36 |
+
def __init__(
|
37 |
+
self,
|
38 |
+
vocab_file,
|
39 |
+
unk_token="<unk>",
|
40 |
+
bos_token="<s>",
|
41 |
+
eos_token="</s>",
|
42 |
+
pad_token=None,
|
43 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
44 |
+
add_bos_token=True,
|
45 |
+
add_eos_token=False,
|
46 |
+
clean_up_tokenization_spaces=False,
|
47 |
+
**kwargs,
|
48 |
+
):
|
49 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
50 |
+
bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
|
51 |
+
eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
|
52 |
+
unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
|
53 |
+
pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
|
54 |
+
super().__init__(
|
55 |
+
bos_token=bos_token,
|
56 |
+
eos_token=eos_token,
|
57 |
+
unk_token=unk_token,
|
58 |
+
pad_token=pad_token,
|
59 |
+
add_bos_token=add_bos_token,
|
60 |
+
add_eos_token=add_eos_token,
|
61 |
+
sp_model_kwargs=self.sp_model_kwargs,
|
62 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
63 |
+
**kwargs,
|
64 |
+
)
|
65 |
+
self.vocab_file = vocab_file
|
66 |
+
self.add_bos_token = add_bos_token
|
67 |
+
self.add_eos_token = add_eos_token
|
68 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
69 |
+
self.sp_model.Load(vocab_file)
|
70 |
+
|
71 |
+
def __getstate__(self):
|
72 |
+
state = self.__dict__.copy()
|
73 |
+
state["sp_model"] = None
|
74 |
+
return state
|
75 |
+
|
76 |
+
def __setstate__(self, d):
|
77 |
+
self.__dict__ = d
|
78 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
79 |
+
self.sp_model.Load(self.vocab_file)
|
80 |
+
|
81 |
+
@property
|
82 |
+
def vocab_size(self):
|
83 |
+
"""Returns vocab size"""
|
84 |
+
return self.sp_model.get_piece_size()
|
85 |
+
|
86 |
+
def get_vocab(self):
|
87 |
+
"""Returns vocab as a dict"""
|
88 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
89 |
+
vocab.update(self.added_tokens_encoder)
|
90 |
+
return vocab
|
91 |
+
|
92 |
+
def _tokenize(self, text):
|
93 |
+
"""Returns a tokenized string."""
|
94 |
+
return self.sp_model.encode(text, out_type=str)
|
95 |
+
|
96 |
+
def _convert_token_to_id(self, token):
|
97 |
+
"""Converts a token (str) in an id using the vocab."""
|
98 |
+
return self.sp_model.piece_to_id(token)
|
99 |
+
|
100 |
+
def _convert_id_to_token(self, index):
|
101 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
102 |
+
token = self.sp_model.IdToPiece(index)
|
103 |
+
return token
|
104 |
+
|
105 |
+
def convert_tokens_to_string(self, tokens):
|
106 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
107 |
+
current_sub_tokens = []
|
108 |
+
out_string = ""
|
109 |
+
prev_is_special = False
|
110 |
+
for i, token in enumerate(tokens):
|
111 |
+
# make sure that special tokens are not decoded using sentencepiece model
|
112 |
+
if token in self.all_special_tokens:
|
113 |
+
if not prev_is_special and i != 0:
|
114 |
+
out_string += " "
|
115 |
+
out_string += self.sp_model.decode(current_sub_tokens) + token
|
116 |
+
prev_is_special = True
|
117 |
+
current_sub_tokens = []
|
118 |
+
else:
|
119 |
+
current_sub_tokens.append(token)
|
120 |
+
prev_is_special = False
|
121 |
+
out_string += self.sp_model.decode(current_sub_tokens)
|
122 |
+
return out_string
|
123 |
+
|
124 |
+
def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
125 |
+
"""
|
126 |
+
Save the vocabulary and special tokens file to a directory.
|
127 |
+
|
128 |
+
Args:
|
129 |
+
save_directory (`str`):
|
130 |
+
The directory in which to save the vocabulary.
|
131 |
+
|
132 |
+
Returns:
|
133 |
+
`Tuple(str)`: Paths to the files saved.
|
134 |
+
"""
|
135 |
+
if not os.path.isdir(save_directory):
|
136 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
137 |
+
return
|
138 |
+
out_vocab_file = os.path.join(
|
139 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
140 |
+
)
|
141 |
+
|
142 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
143 |
+
copyfile(self.vocab_file, out_vocab_file)
|
144 |
+
elif not os.path.isfile(self.vocab_file):
|
145 |
+
with open(out_vocab_file, "wb") as fi:
|
146 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
147 |
+
fi.write(content_spiece_model)
|
148 |
+
|
149 |
+
return (out_vocab_file,)
|
150 |
+
|
151 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
152 |
+
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
153 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
154 |
+
|
155 |
+
output = bos_token_id + token_ids_0 + eos_token_id
|
156 |
+
|
157 |
+
if token_ids_1 is not None:
|
158 |
+
output = output + bos_token_id + token_ids_1 + eos_token_id
|
159 |
+
|
160 |
+
return output
|
161 |
+
|
162 |
+
def get_special_tokens_mask(
|
163 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
164 |
+
) -> List[int]:
|
165 |
+
"""
|
166 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
167 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
168 |
+
|
169 |
+
Args:
|
170 |
+
token_ids_0 (`List[int]`):
|
171 |
+
List of IDs.
|
172 |
+
token_ids_1 (`List[int]`, *optional*):
|
173 |
+
Optional second list of IDs for sequence pairs.
|
174 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
175 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
176 |
+
|
177 |
+
Returns:
|
178 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
179 |
+
"""
|
180 |
+
if already_has_special_tokens:
|
181 |
+
return super().get_special_tokens_mask(
|
182 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
183 |
+
)
|
184 |
+
|
185 |
+
bos_token_id = [1] if self.add_bos_token else []
|
186 |
+
eos_token_id = [1] if self.add_eos_token else []
|
187 |
+
|
188 |
+
if token_ids_1 is None:
|
189 |
+
return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
|
190 |
+
return (
|
191 |
+
bos_token_id
|
192 |
+
+ ([0] * len(token_ids_0))
|
193 |
+
+ eos_token_id
|
194 |
+
+ bos_token_id
|
195 |
+
+ ([0] * len(token_ids_1))
|
196 |
+
+ eos_token_id
|
197 |
+
)
|
198 |
+
|
199 |
+
def create_token_type_ids_from_sequences(
|
200 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
201 |
+
) -> List[int]:
|
202 |
+
"""
|
203 |
+
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
|
204 |
+
sequence pair mask has the following format:
|
205 |
+
|
206 |
+
```
|
207 |
+
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
208 |
+
| first sequence | second sequence |
|
209 |
+
```
|
210 |
+
|
211 |
+
if token_ids_1 is None, only returns the first portion of the mask (0s).
|
212 |
+
|
213 |
+
Args:
|
214 |
+
token_ids_0 (`List[int]`):
|
215 |
+
List of ids.
|
216 |
+
token_ids_1 (`List[int]`, *optional*):
|
217 |
+
Optional second list of IDs for sequence pairs.
|
218 |
+
|
219 |
+
Returns:
|
220 |
+
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
221 |
+
"""
|
222 |
+
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
223 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
224 |
+
|
225 |
+
output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
|
226 |
+
|
227 |
+
if token_ids_1 is not None:
|
228 |
+
output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
|
229 |
+
|
230 |
+
return output
|
231 |
+
|