modify: update modeling code
Browse files- configuration_baichuan.py +3 -0
- modeling_baichuan.py +72 -57
- quantizer.py +106 -7
- requirements.txt +6 -0
- tokenization_baichuan.py +2 -1
configuration_baichuan.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
|
2 |
from transformers.configuration_utils import PretrainedConfig
|
3 |
|
@@ -21,6 +22,7 @@ class BaichuanConfig(PretrainedConfig):
|
|
21 |
bos_token_id=1,
|
22 |
eos_token_id=2,
|
23 |
tie_word_embeddings=False,
|
|
|
24 |
**kwargs,
|
25 |
):
|
26 |
self.vocab_size = vocab_size
|
@@ -33,6 +35,7 @@ class BaichuanConfig(PretrainedConfig):
|
|
33 |
self.initializer_range = initializer_range
|
34 |
self.rms_norm_eps = rms_norm_eps
|
35 |
self.use_cache = use_cache
|
|
|
36 |
super().__init__(
|
37 |
pad_token_id=pad_token_id,
|
38 |
bos_token_id=bos_token_id,
|
|
|
1 |
+
# Copyright (c) 2023, Baichuan Intelligent Technology. All rights reserved.
|
2 |
|
3 |
from transformers.configuration_utils import PretrainedConfig
|
4 |
|
|
|
22 |
bos_token_id=1,
|
23 |
eos_token_id=2,
|
24 |
tie_word_embeddings=False,
|
25 |
+
gradient_checkpointing=False,
|
26 |
**kwargs,
|
27 |
):
|
28 |
self.vocab_size = vocab_size
|
|
|
35 |
self.initializer_range = initializer_range
|
36 |
self.rms_norm_eps = rms_norm_eps
|
37 |
self.use_cache = use_cache
|
38 |
+
self.gradient_checkpointing = gradient_checkpointing,
|
39 |
super().__init__(
|
40 |
pad_token_id=pad_token_id,
|
41 |
bos_token_id=bos_token_id,
|
modeling_baichuan.py
CHANGED
@@ -1,3 +1,5 @@
|
|
|
|
|
|
1 |
import math
|
2 |
from typing import List, Optional, Tuple, Union
|
3 |
|
@@ -7,30 +9,31 @@ from transformers import PreTrainedModel
|
|
7 |
from transformers.activations import ACT2FN
|
8 |
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
9 |
from transformers.utils import logging
|
|
|
10 |
|
11 |
from .configuration_baichuan import BaichuanConfig
|
12 |
|
13 |
logger = logging.get_logger(__name__)
|
14 |
|
15 |
-
def
|
16 |
-
def
|
17 |
start = (2 ** (-2 ** -(math.log2(n) - 3)))
|
18 |
ratio = start
|
19 |
return [start * ratio ** i for i in range(n)]
|
20 |
|
21 |
if math.log2(n).is_integer():
|
22 |
-
return
|
23 |
else:
|
24 |
closest_power_of_2 = 2 ** math.floor(math.log2(n))
|
25 |
-
return
|
26 |
-
|
27 |
|
28 |
def _fill_with_neg_inf(t):
|
29 |
"""FP16-compatible function that fills a tensor with -inf."""
|
30 |
return t.float().fill_(float("-inf")).type_as(t)
|
31 |
|
32 |
def _gen_alibi_mask(n_head, max_pos):
|
33 |
-
slopes = torch.Tensor(
|
34 |
alibi = slopes.unsqueeze(1).unsqueeze(1) * torch.arange(max_pos).unsqueeze(0).unsqueeze(0).expand(
|
35 |
n_head, -1, -1)
|
36 |
alibi = alibi.view(n_head, 1, max_pos)
|
@@ -87,8 +90,7 @@ class BaichuanAttention(torch.nn.Module):
|
|
87 |
|
88 |
if (self.head_dim * self.num_heads) != self.hidden_size:
|
89 |
raise ValueError(
|
90 |
-
f"hidden_size
|
91 |
-
f" and `num_heads`: {self.num_heads})."
|
92 |
)
|
93 |
self.W_pack = torch.nn.Linear(self.hidden_size, 3 * self.hidden_size, bias=False)
|
94 |
self.o_proj = torch.nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
@@ -100,7 +102,6 @@ class BaichuanAttention(torch.nn.Module):
|
|
100 |
self,
|
101 |
hidden_states: torch.Tensor,
|
102 |
attention_mask: Optional[torch.Tensor] = None,
|
103 |
-
position_ids: Optional[torch.LongTensor] = None,
|
104 |
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
105 |
output_attentions: bool = False,
|
106 |
use_cache: bool = False,
|
@@ -127,12 +128,6 @@ class BaichuanAttention(torch.nn.Module):
|
|
127 |
|
128 |
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
129 |
|
130 |
-
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
131 |
-
raise ValueError(
|
132 |
-
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
133 |
-
f" {attn_weights.size()}"
|
134 |
-
)
|
135 |
-
|
136 |
if attention_mask is not None:
|
137 |
if attn_weights.size(-2) == 1:
|
138 |
attention_mask = attention_mask[:, -1:, :]
|
@@ -142,12 +137,6 @@ class BaichuanAttention(torch.nn.Module):
|
|
142 |
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1)
|
143 |
attn_output = torch.matmul(attn_weights, value_states)
|
144 |
|
145 |
-
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
146 |
-
raise ValueError(
|
147 |
-
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
148 |
-
f" {attn_output.size()}"
|
149 |
-
)
|
150 |
-
|
151 |
attn_output = attn_output.transpose(1, 2)
|
152 |
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
153 |
attn_output = self.o_proj(attn_output)
|
@@ -175,7 +164,6 @@ class BaichuanLayer(torch.nn.Module):
|
|
175 |
self,
|
176 |
hidden_states: torch.Tensor,
|
177 |
attention_mask: Optional[torch.Tensor] = None,
|
178 |
-
position_ids: Optional[torch.LongTensor] = None,
|
179 |
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
180 |
output_attentions: Optional[bool] = False,
|
181 |
use_cache: Optional[bool] = False,
|
@@ -189,7 +177,6 @@ class BaichuanLayer(torch.nn.Module):
|
|
189 |
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
190 |
hidden_states=hidden_states,
|
191 |
attention_mask=attention_mask,
|
192 |
-
position_ids=position_ids,
|
193 |
past_key_value=past_key_value,
|
194 |
output_attentions=output_attentions,
|
195 |
use_cache=use_cache,
|
@@ -244,7 +231,7 @@ class BaichuanModel(BaichuanPreTrainedModel):
|
|
244 |
self.layers = torch.nn.ModuleList([BaichuanLayer(config) for _ in range(config.num_hidden_layers)])
|
245 |
self.norm = RMSNorm(config.hidden_size, epsilon=config.rms_norm_eps)
|
246 |
|
247 |
-
self.gradient_checkpointing =
|
248 |
self.post_init()
|
249 |
self.max_cache_pos = config.model_max_length
|
250 |
self.first_run = True
|
@@ -253,7 +240,7 @@ class BaichuanModel(BaichuanPreTrainedModel):
|
|
253 |
if self.first_run:
|
254 |
self.first_run = False
|
255 |
self.register_buffer("future_mask", _gen_alibi_mask(self.n_head, self.max_cache_pos).to(tensor), persistent=False)
|
256 |
-
if
|
257 |
self.max_cache_pos = seq_length_with_past
|
258 |
self.register_buffer("future_mask", _gen_alibi_mask(self.n_head, self.max_cache_pos).to(tensor), persistent=False)
|
259 |
mask = self.future_mask[:self.n_head, :seq_length_with_past, :seq_length_with_past]
|
@@ -262,8 +249,6 @@ class BaichuanModel(BaichuanPreTrainedModel):
|
|
262 |
def forward(
|
263 |
self,
|
264 |
input_ids: torch.LongTensor = None,
|
265 |
-
attention_mask: Optional[torch.Tensor] = None,
|
266 |
-
position_ids: Optional[torch.LongTensor] = None,
|
267 |
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
268 |
inputs_embeds: Optional[torch.FloatTensor] = None,
|
269 |
use_cache: Optional[bool] = False,
|
@@ -273,34 +258,24 @@ class BaichuanModel(BaichuanPreTrainedModel):
|
|
273 |
) -> Union[Tuple, BaseModelOutputWithPast]:
|
274 |
|
275 |
|
276 |
-
# retrieve input_ids and inputs_embeds
|
277 |
if input_ids is not None and inputs_embeds is not None:
|
278 |
-
raise ValueError("You cannot
|
279 |
elif input_ids is not None:
|
280 |
batch_size, seq_length = input_ids.shape
|
281 |
elif inputs_embeds is not None:
|
282 |
batch_size, seq_length, _ = inputs_embeds.shape
|
283 |
else:
|
284 |
-
raise ValueError("You
|
285 |
|
286 |
seq_length_with_past = seq_length
|
287 |
-
past_key_values_length = 0
|
288 |
|
289 |
if past_key_values is not None:
|
290 |
past_key_values_length = past_key_values[0][0].shape[2]
|
291 |
seq_length_with_past = seq_length_with_past + past_key_values_length
|
292 |
|
293 |
-
if position_ids is None:
|
294 |
-
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
295 |
-
position_ids = torch.arange(
|
296 |
-
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
297 |
-
)
|
298 |
-
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
299 |
-
else:
|
300 |
-
position_ids = position_ids.view(-1, seq_length).long()
|
301 |
-
|
302 |
if inputs_embeds is None:
|
303 |
inputs_embeds = self.embed_tokens(input_ids)
|
|
|
304 |
# embed positions
|
305 |
attention_mask = self.get_alibi_mask(inputs_embeds, seq_length_with_past)
|
306 |
|
@@ -337,14 +312,12 @@ class BaichuanModel(BaichuanPreTrainedModel):
|
|
337 |
create_custom_forward(decoder_layer),
|
338 |
hidden_states,
|
339 |
attention_mask,
|
340 |
-
position_ids,
|
341 |
None,
|
342 |
)
|
343 |
else:
|
344 |
layer_outputs = decoder_layer(
|
345 |
hidden_states,
|
346 |
attention_mask=attention_mask,
|
347 |
-
position_ids=position_ids,
|
348 |
past_key_value=past_key_value,
|
349 |
output_attentions=output_attentions,
|
350 |
use_cache=use_cache,
|
@@ -387,8 +360,6 @@ class BaichuanForCausalLM(BaichuanPreTrainedModel):
|
|
387 |
def forward(
|
388 |
self,
|
389 |
input_ids: torch.LongTensor = None,
|
390 |
-
attention_mask: Optional[torch.Tensor] = None,
|
391 |
-
position_ids: Optional[torch.LongTensor] = None,
|
392 |
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
393 |
inputs_embeds: Optional[torch.FloatTensor] = None,
|
394 |
labels: Optional[torch.LongTensor] = None,
|
@@ -396,14 +367,13 @@ class BaichuanForCausalLM(BaichuanPreTrainedModel):
|
|
396 |
output_attentions: Optional[bool] = False,
|
397 |
output_hidden_states: Optional[bool] = False,
|
398 |
return_dict: Optional[bool] = True,
|
|
|
399 |
) -> Union[Tuple, CausalLMOutputWithPast]:
|
400 |
|
401 |
|
402 |
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
403 |
outputs = self.model(
|
404 |
input_ids=input_ids,
|
405 |
-
attention_mask=attention_mask,
|
406 |
-
position_ids=position_ids,
|
407 |
past_key_values=past_key_values,
|
408 |
inputs_embeds=inputs_embeds,
|
409 |
use_cache=use_cache,
|
@@ -446,14 +416,6 @@ class BaichuanForCausalLM(BaichuanPreTrainedModel):
|
|
446 |
if past_key_values:
|
447 |
input_ids = input_ids[:, -1:]
|
448 |
|
449 |
-
position_ids = kwargs.get("position_ids", None)
|
450 |
-
if attention_mask is not None and position_ids is None:
|
451 |
-
# create position_ids on the fly for batch generation
|
452 |
-
position_ids = attention_mask.long().cumsum(-1) - 1
|
453 |
-
position_ids.masked_fill_(attention_mask == 0, 1)
|
454 |
-
if past_key_values:
|
455 |
-
position_ids = position_ids[:, -1].unsqueeze(-1)
|
456 |
-
|
457 |
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
458 |
if inputs_embeds is not None and past_key_values is None:
|
459 |
model_inputs = {"inputs_embeds": inputs_embeds}
|
@@ -462,10 +424,8 @@ class BaichuanForCausalLM(BaichuanPreTrainedModel):
|
|
462 |
|
463 |
model_inputs.update(
|
464 |
{
|
465 |
-
"position_ids": position_ids,
|
466 |
"past_key_values": past_key_values,
|
467 |
"use_cache": kwargs.get("use_cache"),
|
468 |
-
"attention_mask": attention_mask,
|
469 |
}
|
470 |
)
|
471 |
return model_inputs
|
@@ -477,12 +437,13 @@ class BaichuanForCausalLM(BaichuanPreTrainedModel):
|
|
477 |
for layer_past in past_key_values
|
478 |
)
|
479 |
|
|
|
480 |
def quantize(self, bits: int):
|
481 |
try:
|
482 |
from .quantizer import QLinear
|
483 |
except ImportError:
|
484 |
raise ImportError(
|
485 |
-
f"
|
486 |
)
|
487 |
|
488 |
for layer in self.model.layers:
|
@@ -512,3 +473,57 @@ class BaichuanForCausalLM(BaichuanPreTrainedModel):
|
|
512 |
bias = None,
|
513 |
)
|
514 |
return self
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2023, Baichuan Intelligent Technology. All rights reserved.
|
2 |
+
|
3 |
import math
|
4 |
from typing import List, Optional, Tuple, Union
|
5 |
|
|
|
9 |
from transformers.activations import ACT2FN
|
10 |
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
11 |
from transformers.utils import logging
|
12 |
+
from transformers.generation.utils import GenerationConfig
|
13 |
|
14 |
from .configuration_baichuan import BaichuanConfig
|
15 |
|
16 |
logger = logging.get_logger(__name__)
|
17 |
|
18 |
+
def _get_interleave(n):
|
19 |
+
def _get_interleave_power_of_2(n):
|
20 |
start = (2 ** (-2 ** -(math.log2(n) - 3)))
|
21 |
ratio = start
|
22 |
return [start * ratio ** i for i in range(n)]
|
23 |
|
24 |
if math.log2(n).is_integer():
|
25 |
+
return _get_interleave_power_of_2(n)
|
26 |
else:
|
27 |
closest_power_of_2 = 2 ** math.floor(math.log2(n))
|
28 |
+
return _get_interleave_power_of_2(closest_power_of_2) + \
|
29 |
+
_get_interleave(2 * closest_power_of_2)[0::2][:n - closest_power_of_2]
|
30 |
|
31 |
def _fill_with_neg_inf(t):
|
32 |
"""FP16-compatible function that fills a tensor with -inf."""
|
33 |
return t.float().fill_(float("-inf")).type_as(t)
|
34 |
|
35 |
def _gen_alibi_mask(n_head, max_pos):
|
36 |
+
slopes = torch.Tensor(_get_interleave(n_head))
|
37 |
alibi = slopes.unsqueeze(1).unsqueeze(1) * torch.arange(max_pos).unsqueeze(0).unsqueeze(0).expand(
|
38 |
n_head, -1, -1)
|
39 |
alibi = alibi.view(n_head, 1, max_pos)
|
|
|
90 |
|
91 |
if (self.head_dim * self.num_heads) != self.hidden_size:
|
92 |
raise ValueError(
|
93 |
+
f"hidden_size {self.hidden_size} is not divisible by num_heads {self.num_heads}"
|
|
|
94 |
)
|
95 |
self.W_pack = torch.nn.Linear(self.hidden_size, 3 * self.hidden_size, bias=False)
|
96 |
self.o_proj = torch.nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
|
|
102 |
self,
|
103 |
hidden_states: torch.Tensor,
|
104 |
attention_mask: Optional[torch.Tensor] = None,
|
|
|
105 |
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
106 |
output_attentions: bool = False,
|
107 |
use_cache: bool = False,
|
|
|
128 |
|
129 |
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
130 |
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
if attention_mask is not None:
|
132 |
if attn_weights.size(-2) == 1:
|
133 |
attention_mask = attention_mask[:, -1:, :]
|
|
|
137 |
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1)
|
138 |
attn_output = torch.matmul(attn_weights, value_states)
|
139 |
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
attn_output = attn_output.transpose(1, 2)
|
141 |
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
142 |
attn_output = self.o_proj(attn_output)
|
|
|
164 |
self,
|
165 |
hidden_states: torch.Tensor,
|
166 |
attention_mask: Optional[torch.Tensor] = None,
|
|
|
167 |
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
168 |
output_attentions: Optional[bool] = False,
|
169 |
use_cache: Optional[bool] = False,
|
|
|
177 |
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
178 |
hidden_states=hidden_states,
|
179 |
attention_mask=attention_mask,
|
|
|
180 |
past_key_value=past_key_value,
|
181 |
output_attentions=output_attentions,
|
182 |
use_cache=use_cache,
|
|
|
231 |
self.layers = torch.nn.ModuleList([BaichuanLayer(config) for _ in range(config.num_hidden_layers)])
|
232 |
self.norm = RMSNorm(config.hidden_size, epsilon=config.rms_norm_eps)
|
233 |
|
234 |
+
self.gradient_checkpointing = config.gradient_checkpointing
|
235 |
self.post_init()
|
236 |
self.max_cache_pos = config.model_max_length
|
237 |
self.first_run = True
|
|
|
240 |
if self.first_run:
|
241 |
self.first_run = False
|
242 |
self.register_buffer("future_mask", _gen_alibi_mask(self.n_head, self.max_cache_pos).to(tensor), persistent=False)
|
243 |
+
if seq_length_with_past > self.max_cache_pos:
|
244 |
self.max_cache_pos = seq_length_with_past
|
245 |
self.register_buffer("future_mask", _gen_alibi_mask(self.n_head, self.max_cache_pos).to(tensor), persistent=False)
|
246 |
mask = self.future_mask[:self.n_head, :seq_length_with_past, :seq_length_with_past]
|
|
|
249 |
def forward(
|
250 |
self,
|
251 |
input_ids: torch.LongTensor = None,
|
|
|
|
|
252 |
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
253 |
inputs_embeds: Optional[torch.FloatTensor] = None,
|
254 |
use_cache: Optional[bool] = False,
|
|
|
258 |
) -> Union[Tuple, BaseModelOutputWithPast]:
|
259 |
|
260 |
|
|
|
261 |
if input_ids is not None and inputs_embeds is not None:
|
262 |
+
raise ValueError("You cannot provide both input_ids and inputs_embeds simultaneously")
|
263 |
elif input_ids is not None:
|
264 |
batch_size, seq_length = input_ids.shape
|
265 |
elif inputs_embeds is not None:
|
266 |
batch_size, seq_length, _ = inputs_embeds.shape
|
267 |
else:
|
268 |
+
raise ValueError("You need to provide input_ids or inputs_embeds")
|
269 |
|
270 |
seq_length_with_past = seq_length
|
|
|
271 |
|
272 |
if past_key_values is not None:
|
273 |
past_key_values_length = past_key_values[0][0].shape[2]
|
274 |
seq_length_with_past = seq_length_with_past + past_key_values_length
|
275 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
276 |
if inputs_embeds is None:
|
277 |
inputs_embeds = self.embed_tokens(input_ids)
|
278 |
+
|
279 |
# embed positions
|
280 |
attention_mask = self.get_alibi_mask(inputs_embeds, seq_length_with_past)
|
281 |
|
|
|
312 |
create_custom_forward(decoder_layer),
|
313 |
hidden_states,
|
314 |
attention_mask,
|
|
|
315 |
None,
|
316 |
)
|
317 |
else:
|
318 |
layer_outputs = decoder_layer(
|
319 |
hidden_states,
|
320 |
attention_mask=attention_mask,
|
|
|
321 |
past_key_value=past_key_value,
|
322 |
output_attentions=output_attentions,
|
323 |
use_cache=use_cache,
|
|
|
360 |
def forward(
|
361 |
self,
|
362 |
input_ids: torch.LongTensor = None,
|
|
|
|
|
363 |
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
364 |
inputs_embeds: Optional[torch.FloatTensor] = None,
|
365 |
labels: Optional[torch.LongTensor] = None,
|
|
|
367 |
output_attentions: Optional[bool] = False,
|
368 |
output_hidden_states: Optional[bool] = False,
|
369 |
return_dict: Optional[bool] = True,
|
370 |
+
**kwargs
|
371 |
) -> Union[Tuple, CausalLMOutputWithPast]:
|
372 |
|
373 |
|
374 |
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
375 |
outputs = self.model(
|
376 |
input_ids=input_ids,
|
|
|
|
|
377 |
past_key_values=past_key_values,
|
378 |
inputs_embeds=inputs_embeds,
|
379 |
use_cache=use_cache,
|
|
|
416 |
if past_key_values:
|
417 |
input_ids = input_ids[:, -1:]
|
418 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
419 |
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
420 |
if inputs_embeds is not None and past_key_values is None:
|
421 |
model_inputs = {"inputs_embeds": inputs_embeds}
|
|
|
424 |
|
425 |
model_inputs.update(
|
426 |
{
|
|
|
427 |
"past_key_values": past_key_values,
|
428 |
"use_cache": kwargs.get("use_cache"),
|
|
|
429 |
}
|
430 |
)
|
431 |
return model_inputs
|
|
|
437 |
for layer_past in past_key_values
|
438 |
)
|
439 |
|
440 |
+
|
441 |
def quantize(self, bits: int):
|
442 |
try:
|
443 |
from .quantizer import QLinear
|
444 |
except ImportError:
|
445 |
raise ImportError(
|
446 |
+
f"Needs QLinear to run quantize."
|
447 |
)
|
448 |
|
449 |
for layer in self.model.layers:
|
|
|
473 |
bias = None,
|
474 |
)
|
475 |
return self
|
476 |
+
|
477 |
+
def _build_chat_input(self, tokenizer, messages: List[dict], max_new_tokens: int=0):
|
478 |
+
max_new_tokens = max_new_tokens or self.generation_config.max_new_tokens
|
479 |
+
max_input_tokens = self.config.model_max_length - max_new_tokens
|
480 |
+
max_input_tokens = max(self.config.model_max_length // 2, max_input_tokens)
|
481 |
+
total_input, round_input = [], []
|
482 |
+
for i, message in enumerate(messages[::-1]):
|
483 |
+
content_tokens = tokenizer.encode(message['content'])
|
484 |
+
if message['role'] == 'user':
|
485 |
+
round_input = [self.generation_config.user_token_id] + content_tokens + round_input
|
486 |
+
if total_input and len(total_input) + len(round_input) > max_input_tokens:
|
487 |
+
break
|
488 |
+
else:
|
489 |
+
total_input = round_input + total_input
|
490 |
+
if len(total_input) >= max_input_tokens:
|
491 |
+
break
|
492 |
+
else:
|
493 |
+
round_input = []
|
494 |
+
elif message['role'] == 'assistant':
|
495 |
+
round_input = [
|
496 |
+
self.generation_config.assistant_token_id
|
497 |
+
] + content_tokens + [
|
498 |
+
self.generation_config.eos_token_id
|
499 |
+
] + round_input
|
500 |
+
else:
|
501 |
+
raise ValueError(f"message role not supported yet: {message['role']}")
|
502 |
+
total_input = total_input[-max_input_tokens:] # truncate left
|
503 |
+
total_input.append(self.generation_config.assistant_token_id)
|
504 |
+
total_input = torch.LongTensor([total_input]).to(self.device)
|
505 |
+
return total_input
|
506 |
+
|
507 |
+
@torch.no_grad()
|
508 |
+
def chat(self, tokenizer, messages: List[dict], stream=False,
|
509 |
+
generation_config: Optional[GenerationConfig]=None):
|
510 |
+
generation_config = generation_config or self.generation_config
|
511 |
+
input_ids = self._build_chat_input(tokenizer, messages, generation_config.max_new_tokens)
|
512 |
+
if stream:
|
513 |
+
from transformers_stream_generator.main import NewGenerationMixin, StreamGenerationConfig
|
514 |
+
self.__class__.generate = NewGenerationMixin.generate
|
515 |
+
self.__class__.sample_stream = NewGenerationMixin.sample_stream
|
516 |
+
stream_config = StreamGenerationConfig(**generation_config.to_dict(), do_stream=True)
|
517 |
+
|
518 |
+
def stream_generator():
|
519 |
+
outputs = []
|
520 |
+
for token in self.generate(input_ids, generation_config=stream_config):
|
521 |
+
outputs.append(token.item())
|
522 |
+
yield tokenizer.decode(outputs, skip_special_tokens=True)
|
523 |
+
|
524 |
+
return stream_generator()
|
525 |
+
else:
|
526 |
+
self.__class__.generate = PreTrainedModel.generate # disable stream
|
527 |
+
outputs = self.generate(input_ids, generation_config=generation_config)
|
528 |
+
response = tokenizer.decode(outputs[0][len(input_ids[0]):], skip_special_tokens=True)
|
529 |
+
return response
|
quantizer.py
CHANGED
@@ -1,24 +1,123 @@
|
|
|
|
|
|
1 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
class QLinear(torch.nn.Module):
|
4 |
def __init__(self, bits: int, weight: torch.Tensor, bias=None):
|
5 |
super().__init__()
|
6 |
self.quant_bits = bits
|
7 |
-
if self.quant_bits != 8:
|
8 |
-
raise ValueError(
|
9 |
-
f'Only supprt int8 quant in current version'
|
10 |
-
)
|
11 |
self.scale = weight.abs().max(dim=-1).values / ((2 ** (bits - 1)) - 1)
|
12 |
-
self.
|
13 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
14 |
self.bias = None
|
15 |
|
16 |
def forward(self, input):
|
|
|
|
|
|
|
17 |
if self.weight.device != input.device:
|
18 |
self.weight = self.weight.to(input.device)
|
19 |
self.scale = self.scale.to(input.device)
|
20 |
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
if self.bias is not None:
|
23 |
output = output + self.bias
|
24 |
return output
|
|
|
1 |
+
# Copyright (c) 2023, Baichuan Intelligent Technology. All rights reserved.
|
2 |
+
|
3 |
import torch
|
4 |
+
from typing import List
|
5 |
+
import bz2
|
6 |
+
import base64
|
7 |
+
import ctypes
|
8 |
+
from transformers.utils import logging
|
9 |
+
logger = logging.get_logger(__name__)
|
10 |
+
|
11 |
+
try:
|
12 |
+
from cpm_kernels.kernels.base import LazyKernelCModule, KernelFunction, round_up
|
13 |
+
|
14 |
+
class Kernel:
|
15 |
+
def __init__(self, code: bytes, function_names: List[str]):
|
16 |
+
self.code = code
|
17 |
+
self._function_names = function_names
|
18 |
+
self._cmodule = LazyKernelCModule(self.code)
|
19 |
+
|
20 |
+
for name in self._function_names:
|
21 |
+
setattr(self, name, KernelFunction(self._cmodule, name))
|
22 |
+
quantization_code = "QlpoOTFBWSZTWX/mUzwAK6f///////////////////////////////7f////////////4C5duvi2D0Oj1ppVCJ2zQFYbnbsxmq20pAC7kEDb3Z3nWrextY9NZbavON7nveSRqszudmzAGGgkeh0Pewk881e3Tz13kW9YO7uA9AUUiAWLNW2HHWCE005Mdz3jHs1Ic7QNCQBNGgmE000DRNoGjUYmA0mEmJjIaI9JtT0JoaaMTaQ0aMjTTI1TzKMmETwyaJ6k8p4Ke1T0wk2aE0anpPSHppqNM1HqYzVGj0MpsTTUGpoCAAEyAAAmhpPSYowMk9U8mqb0mJtU8ETwCZT1DQ9R5R6htE9TTyRptQeoyHqA0B6g9T1AD1HpGQGgD1A0NPUAAAA0A1Mg00gmhKPU9E2SekHoJ5QHlNDEPUeoDEaBkAHqBoABoNABoAaGgBoAAAAAAA0AAAAAAAAEmoiIgmiD0maRip+qfpR+k9U/QKaZPUepiGeST1HqeU9TQ9JoANAMhoZPU0AAYnqaBoAANABoAAAADQGgAAADTQ0IAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASJEE0AJo0GkxGJoZNKeBoTCnpNNpU9knqn+ppmUnom1PKZqTaaTTwTTFPNJ6pj1BG0eoaMgwQGkYAGk2gjT0jBqaY0RoDeqZoNEYT1NpsA/+iBrt+OVIiCKqfH7N/e67XZ2Dx9tPHyWbW4gAENNTtyzk+/WdoU604SoXU0JgfqgQxVmzbfdmaFcVxQAYINDyjTKU1FCUUzUuqqptg4SBgwIAHYE4NwQOrbY1bOF26LUVuxYr3Hp4paZXaqKU1UmXO3K+IXn2hURrgAegAaTANS+QBclUN6tpvhn85+uTPCLxzj34YO8MIMg45eRAEy9IYbKxeZTRnTy6GpPLtVGWKKK6iuDLa9wjtSmUQREX6wHfE3JeTVZdoj4Hg/3cHlBdw4c4BdGvigzZsubPr3eTi2hs6tZz3J9zUVm8qH+FPwSx4Tdr6by/OA88iLHk34rWNt7fT7NwqqqqqqqrGMYxjFcdqvY2mXyh42c2ccxhtyvBHojjUlyAKRgbvAB6nhls1wGLTOrfGMBsqRXl9Bl3sOlvafSA7sDrmAQI+mw90af+bvJ8mwjP+RKtjobGNzbfl76iTHMiIIUf9oIoygqSG2NLn0Ys/mZ+hzufu7epmzbvP1t7S0Xo8TKK7q6G5MA8vTgBb7Bf/2kITSLsH7Xmfydz7ahAt4YJbBuAQJI+1M8DLJCQH+UPbv212QWIhcCKhBrR2eryfQYIiIhKE0WtbOQ7OwM7OxtURGbF28NBndi9ejVDVA3dne37uDdzrwINS+O/0AzQTCgUjfCAwkkKFMT4Kr0aV3DicVAelGBesGYoCRcLKq5iBFR6SzOzrAwFWDFVYU2XT1oFaRJk2JBDOwVk1LFZZfwY7tQBYMGdECFA1cLZAg0IlfCTCMgZ4afRQBNvXSuMORVUTxTLSTgMFoUtaGLIr524yIM+INSFFIOHQ4TG5NZbd3Su3Nu9raSLd/ueibSYpAL0D42ZkAtD0pnXrfTxYPBw+mAt1cKPCPmDNMCDYCBiQwmANVhdDjBwsdIKyfH1slCvWbJC4QO8SBxi6A+GEpDBN6UQnPaEvBqFk3TwChKSowEENpyAueDIFs6OxxLRmFSUFpjWgYpECgDgfVBJjhg4GGcI9CD0S3igCrdziS3ZoYHlQE+7AELdvbebTVsdRvrPHCgiAbSYzUN0z0SCshLjaUaREEREQQRHNKAgAS9o0kukdJx0ulaJk0kINzlUYN0wWXLLsmRgSG1BEJNh5sCuVtIybGlKUW29BziJUTpqcA8UCCLtOGU0hH17BYTERfPKhCAwxJqSSSMd+umawlsykXZiKHesslqlVDKEHPzFhIWwJHTfcYCGE9dQK9sKixjNifLkW1iLnyZo57BBx2jksXPYjcaA6Z6rlYTl9ocZHn2URKVXnY/Wsrc5l3aym6Uq7u9eu2szSbJgwhqPqfOR1JCCZl7/AehLVBSIXc9npUk8IDzrRCS9XKMeamSDmFxK6OQDhwNnxubbnQygQb4DEL6oD5qkkG6F03dyDAUJB/awNUoDCa3CmYy2QIsK0Z46BoX1N4kY8aGNFB8WZAfWvaHeUT4gYIjEsZBBARIFAk2jCTxAmpW03GtdW4WCN0bLJiiqY3ixmHAWRqqQKqgS2hlf8mwszkhUy3LDx3GLdo5AHGAgC4BogUAVgH4QM0AGAImwbS6gwANIep0rJIU3hBgaeKAEcnzfs+g/sJZnETvInDcAH5fE7azmr8EyIFx77caxbrDBC64CEU8wCqzAHPgkk4kiPREKYHn2HaoDBWCCrFBrhR+XpeNQkdbzCBHee2hW8EW373k/qd/PxGC2R+IO4vmNEAl1AE0l4bEvmnfd5/JYs5gl9XpgQIS7g/LAK7owBwgso9j0yEB9MRIBjqmkLdG5uED3tICA6PYXe4WItRawAenfJ0lCFupoGvajxuQC/5YQPnwFpgQBMNgBndpgVNJcyw+5vCJgHtWU0EDYk2HsvD8Qkg6ANAd8UQXGH/3X3gXgNDefHyaQ/wd93Xx87hWWtW0kPCQGR+KYiPeMQse27PdNLGwhlz8WJObSnEQyHJw1JmStJXTtIg0ZKEHrLZCXd1ljLGkkxtpsDofXUiBH0LLEM43kb2waJ26KZsJ9sBbxcAqzUgWxzogNFm4vSxjMR58r5Xm8H2+6ItGcNX2AK3GhDIMzSX3YyFsbNG0u0MxvZzGFv19k2E45tXrK+1OKUYRiH2OT2Fs7kqtxMDrANVp2nxreAZg02UaFEsuf6+urQi1PxvNOhuacrStndOnonV3e5Du+Xjp8mjhiHYPNexu7UKSbt0Gs2rPIVVVSFyQ7phtQ0ZOUySoyZA79muzuLBZaLAW20gZIeuJDacErguFE3e70svo0S0mRBMBu33rjqVrNEN9A5PHvOgukEPEgb0tYAMrvcvIXB5ydzJHXQ1n+t7BUI24oJtSCTAUet75rBpXL4ylQ4LGBpbQeQCiOku+8rq90o18ga4WEGBDhvHB0YYd/CDLIMdDh2cO/i/RppcEi3Zd+CCU8OdxAAiOgi5qeghJkUnO6YGZi5LEilo2WhSiEVsU2IK7unV2rXG61Q/LbUqGx72rn2Uzx/q/fzsCWUFCQyAA+XqfGVGvL1kml0MVpjJl1A9vYoYTSatnV1+z2czsdoc4QFWLILHn1S71/r3V1S/fJMgDlXX6DVv8+FeECNi1u8zf8K8r1Khq7twFu5xPfZJT+PLpYUZWgGNDG0Jlq4rsQy86u95xqTdO0TbSGBdDOUSyyGHQAmP5mgNfVvgeY2tPzlKbyrvnaZhgQ7aWeJjzbF4mjPlro1hYjmnWUshKxVsQ6pveK850taANOgIE/aJvr0IAC0g2H2d1agVwnBkAF1kl7IPZc8mBthvlYish4AqABgI9hw2cExRabO+8Xz31+enwlCxSbnfVFlqig3UKGBQiybpEBGQLIxuoUMVYLTt53sY+lPlxSAq9f3lfnVlFmiBFrOhAeAF/0/N6HI6/+rsQ2+D5U5fenadDmtFFgeZLLESwOgWWIlgWFo+uFROhke3lKQ4bf0mLH3XSOgtDGd73hfMwDM2aF7Lonl7AlbiPbV2zY2lvu1Vj7jzlmFYoKieH93wt3fLhBXgYUGJEjga5YWEVyE00qIYWXSKd0ZaZy+vuCQlhaz5ELs9n/pjuFAHpoDCMEEtseECQF+Rk58EyW3nzCdlyCeY5WPItdkDZ4egXmjfZTLSVT29ku6KCGxHbdTBD3z52SxkuXkpoaHyy3t25+JwX5zFdYawDASl7397IB2tunNbt2FygaTBIO5qrG0asQmxEVRGCn26UX6DewTmic/QqkLZjdCTqjQDGlxy4IODucyQlmE0zkwSkR02cZjZcA1MzMczZAf1hfPnZT1IGtWIJGOcpzgYwCGyiNtoxRkupRElCCAgWJcE4igRJEQogPHYVAVBAEYDBkUEBIOSMK3KJNwQllpqWZARLCgMM8TkQoHOSZTDbSrjS6QtkYsQSloWSmQ4BlMjEJuuWh0ERMIVRLbcNDDQalLRQiEoBIUKZaiQpZQ1KoooVlNtjVVGAsG6WkNS84MJcoYIgjBrKaODOaUZG6QUZlCUGKy25MUVYGMWC+95zG4FRE0iyDRISulc0GQJt6m5u8WSQD4NAiDAMD9y0Q4TBGAaAIGe6PfdX9zl9Xginufp+HmPiAGfY8ZoDAarMoQAD9kA2OUJQV3lBq86RzpT8nbXPtqxsvN4YTDyOQgGEarV4Tc5h1yv2Npz+65PJpxO/Tefe5S5U1n8asAC3AQIACrUA5XacxgALbHvUfi9ApR956Do3PCWymCzTo7JjufU9DsGcQWqAFwwZfDzR+m6436pzvncYkARkLKOxX23RuLsQeK067Y/Fq8tB7igBMvb836/03fkV4qZ5YY4pFxADLifQb2iaUAwjesDs8Nhx5vnIw3rZOyb9+jyaYazgr2vbSKuf82URMcyf+99L2sWJHqW/I0PfaMR0KsULcnf9Lx/fJFzattuUwcjv8vdJed+FY1s49FrvJMbRVa82imzbdgSpDhEtleDphWrjgzVu59jsXKG/3f88zolkjqRQUk+Xm8F72190OzfqwfT5XAYbvq8WBzq/B+4rLP8j5PDfiytkicVOAAJ6QOe+hWqqwgfq61qtJ7jrsz89u1dDqsK/9Wur9Po5K1vHsXseRHoyF+LoewZ3uHaanw5S9LCW9Gj8k3e5ObY3NfjabO0cbzotaAPB3XIg+av5zaHst8ijMqapTpVtdwy211QZINMi1UCIHnAB3ZLFDZQuraVlNALggow5ygAhEo9EDHUCSm8+Hhev7eTufm8onZ7pATIUwBEBBUUEPBw/zcrl+pwtDJe2XApoPk8CJjTqtqbv7DYwZWFs/M8EhDcYE8AK8A+GfX/aQkYgSLdftV0Id/5gf3lOuNNC0799E3uYYtpMg6yABaJz5en+HpUfveNBXeYA8Whj8TtZK60F8V863ndv3PwKagCzpXtfv1APjaUgxkGLtptiZPR9vldS2Bfy0pT3RXWJlLCCj+GpAz28S4v0YQrYE7We9WpbVXz7KVTWEtoXM/UPZhYnpzdeokWJdNHQ6JQLxp7bOfci50rBcdOdhOqmyeC7B2rL6rxd969Xxc9L4zMrsqZ0+DoaPeSn8Y5QMLTOLpdvz1qaOO5xT1xPjgKnhTYa5pzi5U+bDcHXzYdxpgAbbhf/e8aBprxka5aM2J3lYXBG5G/r7CunzcPyjz2o79z8eDKkMvdO9WixswXLu3TkpoYcV0465fwUxoxC6L9Zwc+QsLDfqipk3wMSSRkBPM8Bxrwt0Mjr4IWW9Tw+Kw23yTbUyYJqrgNaq7saBKAdzYXMQ6mkrfqt72Lk0YwiZmIKkXUgChISCZMMrwdnjWbJDoR5ZXGxxAX5uRBfHBOk6JS8VVVWd56zxf8v3uR0/zON57e6BDuqIcQDJ7H0q5BNPaWbExYw2Bj4tRM9kB+JfynyyEfR/7ZiPXRFLmwpGGjLF9G6/J65mkUZEaKrUdBZYUxFKqGJL4LAbEfZjLi4GYXhv+x3ZpHkC3YADdMsKeYmfKgtzUd+Y7dVngbdcEFGAL3VqaYfYAYMtY3YKIQumTVXUFTFQyU0bqIeMgV2WOcZFXICpoMvueYVy0mHAiaeyNg1p5/QmSbYgyb7WQdUPfY3QeKc0hewGB2z2vH9t+pvy7B6P21pG+wXCMQHZl30TJonLPhQg8nka+raw1OLPUVWvIidrloKjcLH6/YAwepAoWEykQ9Bw2+YU/N5dbXnsNcPbubOszstYSwQYATYulLN0AHAgwb5t+VfATV6uhICgRgDGUaoVNNLc9ZMMW5+qKVhOyoRMLzJolo17ACLDPes+aoyeD5aIZm46HHKV7KqGX1IGbYEEDaAh0Vj+43wIMep+e+gsP4UEgVjmMAWTPz2XZhQDA6/Vzbk0fK+v0+bNB12LRbfmsufKzRgw7Hp7b+J+N2LqWXdwWTvhQ2rIPjc2cgS2A4Ub7IflPitJFAPyFvbvHK+tXi0Zcbi6mO6HTaIydOeYDmSYUIACAZwJCEgueoJnU7W6WfGdWtl1TdD4WHQ8AgDnmNUD+2YrjxNum3+1R9B+XSiSGrVLcFrVC/Z9R7D8DslIGyMPXbJAFthAMNYs7OdlqPilZtnwtReItC2Ff5vD8mQHwayX/vh1LB+HwoefoZ6LWUKb7WH6D0FmEhEKgwAayAYsoKUCcPepjDQYfA2TMWHoiS1lspYmEi2HdFULic/ucQlrFCCwPxyDeITAUsiAUFggCtZuDuVPLvVtM4WCG6DlrLwBL1JAaQFWuf7/uHZ1WAHEBuz9BMrshS8OhZpwrmYpgUIFoauEJQxtrw2iu9bT1ZLik/F26jhZblz7739qomvexIWc5hKq/GfFAebrnq/23mGuisbZhiROtNdFBDwqCBc2zrTYMfhMPwIF0s37CzzvYKeLjIfQZ3D2N6o+FRgDOkDGFGjCDiy9cJBVMOBWJ1AjDIxTAz/LwSRYuyzhHyDiECf0P53hWshYcMslf0PC0tWfLlUztN1xTxhwgkAudx+IE+NuS3phgEhRBo5lXEG6KhGydUzSU2WphfuFy0VkjH2AIPddbJ679s70tkL1rBEEEEmFgwK5pRCB6ZC5EX7ZCkCTI1pQUDJAwhQoosjBZFAjelFmydnwH9j46Ei5DD9ZaOvgT54UpSh4mD7FR2rjbJjFFdyOauUAjNr/DYBQJkLsUsd2mAXDIMHOuu8ULJhkx21G0UL7fnlqIPfiwdblRpcEaxVjru+6bHpdvj38qAOr1rUACbHrKGDWLFjGCBGYoGREGZBh4aGauRARRTmJdfJBWYoCDdFrBtCgYo6H8NyRIvFfbeTFjxF9riIiIiJABkRljjGMYx1mizcSoJ9AAFqKHXgBBgYnYjs06fFb2fl/bceQ8TeN4h1jrKPd/Pbtl3dl3fnbu7u7u7u7u7u7u7u7u79ZxeoA2gbgjyqd70779v47Lsepzo6y18vJkhQMaDKDNhYbWPpJA6hsD3pzguE4gtOhzrtDoDA3oMbPVBY/3fi0DbkWt7GQwMw2BtpNpeKt+v6KytGxxqCQ8JoLCGKIALFxqwIOeI7fqckjnW8eHjcW3xehEp2SWhvmrtDDdoBSOn6jSjQCgLuhd+EBOwr3q9GbUewJDA4QvH+DpFwt+JbtP30yJTy10KFMLT8MmAGUKkqn3DQHSmTACxjEheIpDhGuZT/WrsHgP+ly7Bsto8UYb2bBvwPRV1O/WaEbmIEMEbQtfphLgUDADF7nayfXs1CXBxYOi1aG36B7rr5EX31tzoym2bTIWw0maxvM3Gs+KAOSMztimS4oGQokBRf5dGKNykDp8tH9chWc9k7/6I+SxG5cZSnx52CFhoDqaZ8wBethxjRVKaRfCZTeBpi6ZNdZFjROy9x6tdgMem0rtuH6wbAz9tKvlhJ0JUP1e+2xVgroJFw8tQxLPdwVnLVMDu+mmfk9b5mK3qMNwiMyBqFaajMIgCDBYUXbdKwwVVhoMXL5YLkI5FFviIkYQTNamuapRILAqCSAYSsIOOVAtAUUrDwBSthRBgyVAM1wBrIQhhTlJKQIwFnj+b+aXuJyerhwx7HxQLofddtH71c6UuefecFIrANhfgkaIt5KL4iV43tMeP17BD8D7Dl8+AQTGQfz/rp3JWOfDodJOcvDAquYl1QQiHknUmAQ3lYpRUtJEUowXnnJnOZjZzdINlj+y7lXBb2uPR6a2E5AC3S6dBaJxYl1qyRXwQ15QflVkAK8AmAwql/n4frTztb/XRXV9J3eXRfv0MuB1OShRrtbrfdudwKxsAYC+QHiNISbAQu46ffUU/Flrw68uJ5L+7p69JjfglHs5PSd0bjADZeFsIWCqy0kQ20m3CskYLPShb0aoDdHoJBUQVEirAUgeRTtUBwAa0INXTIBPMHp9AongtXzSfuWCFQfDtzRuYRVG3WIXUjEg7b2vBZKT4ESq2tTcMyGXlqZN+uJ3CaGHEJB/3Q6/xrGIGIxyzCG5tLlSXx61sy0Bra4IFaYrjF1zJj5JPK/SslbN65uYffnqtyIX9zren+rrSsXVVhq8VZ6DFpnBVlD48AoMeltsyGSZSpdUjR6bM9J+oHRVmhpp2HBv+N4PXeS76ctP4LOLvreBzzyCr2v1K7eBo+dr2gwZ2x9k6EpHd7pNRl6Pv+IgXtj4WmtlEUQxkzWOVcT6jcLrhax5PVvgurz9q7DtdWriVdnpnTlTrQqdvWN6ZNr4OdpMM/T5Gg8irLXS/YOgvhteS49VEj8+IfNiPOf8MfMkUw+lYehdNxKZnNbjIoJiqRY1KVGIOWpRtq4m6GCyiypZKKzWBQq5j8RYJE0NCiyjJmgUmDBi8BoJgMVJYXMF4aGDL2XQ4HDKaRGaGhctNBrShK0bSU1BpFoRaTkkCCUWaDCx1MUXQCaGRhgoqhCHmzrFyZwUFG27KVdmNgbChCbZNAMghZRoXKM0CMEXaUTZswtBpLoCkxONrpa2wL0qn0mw2eV0yXs1MGgGSTcAo/GELIbpoe+8gKSqpV0ZIoIa4UCcM2EdVikuAPuDlU89YsXrb9Zb+Pr/F8NexBBbEwTQs9HmsQGBYPoK6bZKDvj9yyALrlOaMbLpKxRM+njvB4id/1Y1WPm3K2A0BVSlgWJNjYxne6JZ8mZfv7w1Nm3/GFOiwonktduZaRH2loGGhNBUlQiHENkybM8pBim0iaXcpE8dAF4GodlriMfOGH6hHY20huVvSlLDBRKHQ4Y3SyKrmCcy7ZZMDyNqVWWwpS+RHQaYnmEURGCKmQc8ARghpQffVMwK2vz6V97O+59X5foz4jUfN33Z49cKeKObXDE1rNvV2QaDOLOi+R0fl+RM8jVQ7QgNiDMzMgUCLlYO71Vn7X7vF0UcSZX1pu+s+xC4MZXNQCl0/rb68aAY3rOJ/jaw7EOYIIlln6V+oFpwZLOUjUVHfe6pdjXgAqsD219Ri16edZ03hcjePW71C29Wy0nTw5YIfs/Y9sNovb+v8vA1P7beB5bQmvEv59b+BnUs8yqQ5/cLKV0EZRMOGHmpsMrPidWDXTyP3fuO+w/9+kbujeEbdg+n4WXJQBn1kL3Py/M1JnkOu70oufaRPG6bsd6SUhq1TALBZAhKpoyMIvkQGRAzJD+udGR9e+WlVzjlJeqELl+D2smL4vG6BUFpiKHDwqftFBbX+9VV338vNg+5kL11bd1yrZaYZrGW36mrUIRi/MVgrNNITCj++zpFSOrRLE+Prlr3mYOP1TtXvtpOwLP5Kmt+3zZvXSsOXW+ix6mXS5mb1MnTvW0u8yHF356RuzXUyeGiLTe+IvXvKmJrEymIxQT9QMSU8WTHgnJi1BgP/WoqICgO21v9Hiw8IaXJY1619oEj/3cb/7R/nddLm6VA5xoN0t3XY6Hiep4VGnzs/Od0hj8f39YuAC5HvfwvWuOeV5fz820AAGglyrLFDjUrv//M/fwNdsEvj0MrTXrV8vLZfMvKMAzJ0/Sda/28/N0QniGmKhoagYUYMGp8IFDrOoi40L48r/SLxfSSDw9TM4P4vUeHE+iTmchyj7Vmwp7m7dejVSNZx+2Is5jzuf+HmHr2aml3fWein0wnXnxne72A86Cc3hrzXgbfc7lNQiJuGMljn2Y8pgXjrTczIy1teeafy8Tz8vmzBWAAFXfojX/x4Kv/YFNprgURbUBytnsI9/0WeuKmZjrWcumUGQgRDIEUsAwZkQMwPsGTJjpTEw7YAwCs7Oxn2XE+hexXn+z/L7HC65bJhCR3SxMdHngfkGgqJnhYzTGjw9StB6E4VI6SgkdNEdesLFW0cgxeYq7YABEPlMspZSBtZDQYZMvK9Cbu/UzXvja7MLlO4BfVYkMH5dwAfQ3u9WEkCoveLyp86iGmleemxREJQ0NoFyWpMxsNQCuuLGCdP703Uv1a3JeT7vfpxp8J+o/ft+J70dz7dV+1QEcxyT6REE6vsl2+0Yd8ayjKWBg2j8pRTeGhVxiYZDc6/YatrSzsw56wbWzGkp3FLpa8+60pan1LSvb+rcfyjTyEM7yC5BVyZL4r0qVCMZRc+AMHxlyZMP5QQiFATNqpVSdy8i66S7oSIl4APKPMzOTus/KeI8rrY6qBkuRSWT0y7LGvNz4KBjigkR4r0v9/bluxFmxePnvZRhpjgezOiX6bPa5LZkzsaLjmf6NzPP1ZfH9p7j4MsQL0YMETXjeb/5lAYcJWU1RECXppb+33HdO5Etl4xLXPxfV8cGZ43FFYXKVoMFQHssoAIzyiClcZR8W8vqiACqmcw8DAwzLM+FeLFaAYRiJ1DFqKh2Fcs+6Zd6erYKNpF09oZhCZNX4DO1OL94JPGTBXIPMmPjmDb0GlmwFaWG2CUqSjhc20YNd6Wwzu52BklGYvDcMnERi4Yh1wqwcOlqiLatNe4rj8FcXDxqMSsgYP5/FnSoTq2VVKttXQ3Gxq0q0Shp+qCbIAeWxu1Ynpd88H5zJfn/V+v+5/N7nyR7Q+n02bmML7aF1Sg+a32Ud2eQx2a8dQqTABf2SKJgvKADJgAJV8Rd0Wt1oIVj9nr/ZfC7fkbdqnS9R4eIbqH2HVNjOYdggfFeSAHKIkaC5R2rzEzdxs7dDCzizsiB7OluhJplyBBWKXPmS0tsUNnNs2D8zfW/QTSAr0EcsnQ/YPZBD4D0rHa3rkC2DHq+G97XfliTeY63fQow3RQpyKsCFgdUC2sF7aep4TmSDjlnDDpfIUJ3Ne7AMT4D7xpuM+j1hXBxYcyIpO3bvLubMhwY3Lrr6KfLP4PF0tpDjMOew5rBbSSUJPAfRMkDCSBum/B7S97oYaYZS56rtu79Vh408mfXcm6HcL0Qe7fRiqav0GhPcuxMpZIm/WHpICgBUirY8aK56MaW53+L/x+BbXNrjaySqntSLsoHFEiExu5hX7+yaqu7Ss2LrWVpPp9L8fuVDJdVcPqIQRFv/gWlUadkCUYMxFQf26Nlq3czS1/zwLAGILGRazcevp3q9/0O/YUWwXKvQTQghgHliLIIbcY0XxVr/9oV2++gsQ57NkRK084MjYapPJJ6Gd7WONsJRq6iIJo0GH/kO9e74wvERAiMW7UqLI+2obG59Xcazzvdk2UIhBDN4V/KqrwHJ9EpMftxjsugftMee96M9+G1DfnomWt7OmvNC5TP5/Fa50GNfJjieHFJ0mwlIothDYzg3BQyahykpudGZEmgiK9ViiKhI9ypBUuKuau8PitJWe1r0kVIrV4VRDTDa74vSvBytKDcNCzJ66Oq5G+hTTGgbpBMS6pJTOmrIjb0m9HsPvrI3rQhSkRYc1aEmn4+CFS9MpIxTpLccqtp+dpwTDqQfFDvleEeOfwGuSJEiR4QBtGkWjWrKysrJEiRI3Pd252xBk1NTBRRRZZZZZZZZZe4EJvbjqWGaaZgEypipYBc9da7d615Ozv+0TPBMoiPZt+OB7H2evtWBqyXzg9jgyNarCYQHxeABDu8KyT59xFO4fpXed3nMVTnQhwffnGz0DpW+c5RkbdjYgCQgDV6Sk3OZyVhq5u3M66CH4jQq6byDLwIv8D7ipARoPE7/rm7y2+93QALi1QT9F/QCxMDOQkHeUdC+o3NN9GXve/W1Ua/wcVgmxFD1YTuKB+xQIiSdMyXLjSbjWwNfsJH8DqADRWZHIyjHLolbAN4CAMrT3YQqcfwcVf9TtpcgPfzwWRN7XWJzrS1KzOVWXccRQ+9TusY64JEtzfyHJnKixBwcbgCBAgQiIiIiiqp3Pje3Y4/hFGgiIiqrTGMYxtsZSR3dlixYyrLVZTH79fh8yNTc4ezofRU9vjHOIATEYEQNb4IG7bzkD59jIzRNInn9c62cuu1ZkYpfHu7uokt8nd1Hc6ApKjEt2qqbEG2l6oUPERCkrFLjmUay3EPnj2vUe43MqIYdrm3PZT7WrLfnw7y9is1SEtuI3OsO3EW80l8imWVq1Yje2a7qnbRVNK7eZSUzwnE6j9CLm24oqbZ35UTokBKroRjwJNyCBEACLMRjnOy84O5zJREd0g8Xa+y0W7O3tcCI+46EvAjDUyqYnOCQAfEhYjlWVo9HFVl0Fk1g6rWywYXLyW9gmyJHKcFdans6g078Q9ryUjaXacP7/PvwauCguS3VK61FsSTIa5RZd+GJqurSiskfDyz7d0Bd7WxYHfJfTrpTamo87sRYMCEdyYaUdCzhu3027ABTtQCAnwKi9q3KK/rIpk6zEjGHEvADnOwuJ1nOvPr8XZNswFPZ07G/LauwBMG1tOWNT76s7Jw1OxxW1BImaJT6XUIQ/1VPRP6UZLBjAVwit2h7xS6TLbCUnzPvqOrOfrbFh/ZAFnP7jW/zIMkMNMUk5C20iKshen2HLTcv3ge8jBXRbUso7c88qlYXXozqDXWcHg21XXWzupu9YmNN2aY8W/tJ3ru1cs4YtK5b/YBitp4WYoOvZCpCIC0Ju2+xw3MABgLVFBetW9KA2pqTQMLlkKFfMNANN6+JBLD7W6/i0AiMi2fIgslxtlD+bdgBbDk1FxvsbR+npU23xUVtnBjvadzYRwqwnvWSPbrgxgFM01Y2yuGIJh4HBXDlmKSUokWxg39HUAD4u4+D8ivAiXNQkqnkKxTsDkVM+u/s6rx/w/VPZ1yL9nnzJm2YZ9Wl+9izPDiRnfzWU5Eo5duybQnktKu3b+J3pVuuBmmnebBXfiZtkpUjLRKvtuhD3GDAd3t8lPpMQgVQmkICwxxqhUhLQMPWxbwjlswPn5rmN8Fi0j25H0DYQMgIsU4+OvNxfxINfZR+ndisEVJrn6M1cgs+qsqW2AYv5gIBUG2nAI2sRJdPp0pkIFsJQ9DC0Exajuxg+5pGLShRHi9wPxlNGkITynkwYgPc5Bjm1ceZiqsTuXbr2ZrcqBszMKehW3A7cYHig2nqO46ef4275H+NjUxZ7Yxj0XWdJ+CBStOyj3EqZrP6f8049HRTOibY6aHBkysu7Zy/0S6gyH3v1st5NJVth4dqmwuarDr5z62e9OpPUqH6te3WRJmOs5XNggNsBgGGgo4SSlh/wYAXsqj3aHIiODcmQbAbQltCKcIoU5klptJHQ0l2P4Tgjad8WBWp9XyPm/j3QYeU5tV+GSJ4bCaYcK2PA4Spq7rr4bGK2La8fhcB+ZpbeVZdDoKcxwCBZQgvQmADvnSmoonhrOe7esVg+7JS5aUYwMCekjlC6YlQHUxfh1evKIB8OGrutYZ4YX41h6Jq6hHuvnBsJnjhYHY81i95iJiJTU6/T7VS3gB1qH0ACm35YBe58z7ceWShP5goYAvCcHOTphatcimJSi7e8cPtVNlLBeanev47WzlgmaIlrfg8PQALIwuyc+Ce7PTEdI6IMaL62wH5dzYaANEsRgmxYif+uWKupAwqrJ4eXO3BFsHrOiYQRSnB5GwA01qir3ZWamHuBtKIrzLS3by/XYFMY2AJEnhaR7ycHZFV8q2AKplu2J5dsQ24LL0qZisABXaOzHlwBFOQv0vOYWldhDsVt5f3Y4pEAsNwPQChB5QmJB9EYeqbx1Mx3plDVGMY02NMYxjG228wkHXLQBuctwIzDl0DNb2d3Zr2eV57mni8HxuT3pPieEQB9MdPlRq2ASoAJ5D34BKD2+jwhMSM3k9e3pXf6aOC4LK2IgIYJ4xQMEhhPzy+0BRQRAMTrG+uVq2FlPAAWvayCMW6HdOctiAZvYzmADuOlcPkF5QWJAaMRsb5I0Onl1kWwDFstny1tu3cPUt/f34gagGAiIG0z+LwJMwuBjAAO0oXQ+j2OhzkkDWu/H1iOt9LZS2d9xud3NjEIOUBcEGiLbYAIhuk6kG3QiZ7Vx448qOR0823ux6gaDAo/m7VGENCDY55QyihE8PY2c3FAOq0eB5VrR2rVOD8Pk54g10gYFruoShyCA600IlGADNkNWFwSUq26fo1MfJozZb8ivAWwKtUCnsIy1VVc6gilxgZXuOpIn5NqpQ4t1rnTCc+zVGQ8dLhuE4NDF7wA+sXOKNy3yzCWV69Yg3C0AUAEgSDmXcoIVu+dFgcdgdaEhA+iWl1AC/p9ikx5Lmxupjb3zEXwOwav5pXeGFu/i1uQdRtu2CBnIi7j7vIXJ+0+JkKDrtuikSysRrZuAkIPGGIXa2KOvhm+tzKtliPPcIGhgwSePz0mjUO5L7zzmcZMHoTM00cmhmTJXLHXXVL0wJj4s1MzRHFFiZHJnI5xbqYKxtqajjQWsuDBeCnFPf3bjFXVC0XXPfJZnZvcUOvlJ5TfVc9np7+YKcF8Pr101cACqIsDSQrhevDLMRutoELrdyRd4yc4EBhnWVGVUo4LsLWMYimrKjHNShUXacMGzWd1rteL0aqM9Wd9vU8jWwVgD0CDq0ypYdiu5V1wDsEFjDwLXJ6pe46MvOgOONLlAwPQwQmNUX+2AdnCCSJdjtaAefC8AY7bANwtVktFIQWVBQ95dSmjz8VnKFc5xsXgOQl3TQHPvghbPELlyOR3/IjaKbR4oXeqF4EjmEktr0SghMIXS60jhlBQIfEIJnyehMgiETwigxDpiHows1RgnEalhk2EzYwRLmRwajUmIaCFSzCXWStGaaJgaMaFOidK9crUyN2ZuYmDCMxbjQvOVrOaRTDXXVeCjhum+v9g5xzwDtdCQ0k+kA7IgR/IB4DE2B6gEv0Dv6l1YUCwQl4cgIQLDp7+vyQ0Ua6AogR/cA0tRku3sTszsBxdKvDwb0HSuapgWAtRzrmM+GLTWgg8og8IOyt6ZvFLTvQ6TdIU4jAZ9qJLorPPx8ToMIzve9bunjAzUZTwZAuejvlIVhEDGHZ43P+c2vnuH0s6xLjGN5IxE0xoW1w0CkEhDEzZIIIKKKJQkS+HFVRzrtPvD4ASgRgCszCJ7egCW+IZ1AZrFQIbETEL8gYz6s0SYtQwYi6Qsmdq1IQVCNcDQEDNHPNnw9vKmss525+DcQrAWHAQARzWHlAGPJFvL0qtVnM2mDSOxfDb56lUUmGI9SmNfCBxBRJtxwA+2eJCOmpSpXLFbYv8diZyMpTv2LEbyMNcTJr20IxsYzUrvRbyu5dvYHUZsRs8gfCLXUEVYi8a2a9PXF+ZtLPx0ZOLRblX8XTa0QJJSoa+VKRIKD5RCmFKYOIiBoFAUCXYIXCCWZKNExSIoiMUmCpS01EkRLAsoE0NCxCz8oQK0iCYNZrgS0sWA4zJgpKMgxYZxIN0k6OoboxHmMgmKyNy3rUrA2BW11g0yU50ArBdUNYm7rW6l+FmQDmsfUcr8Nxpt6ME1pzmPW2YuvyqQA1FEqGKaOFgPS4YwF0qjqJ96aNghQyxO4ETMPCpx6cPhE1xsRksh7qapVjAG7QQVa6blYCqhJolWKylASeNpfutZRkWEfehrAM1hps1M6VN9y+8pnOeOL3eSrvGKkr3kEDbExtsYADtYMAhLoFzWdZo6F3T89cLurlkYDQ8iWVgjINJHQatNc/BZZPPYhX7J3dX5zJTnZ1pJIV4y+k2MF25BTUhIvz2okmED6ax7KgYdJtMkMMjHiBpMVmJIippQbqyHkJreoQDGrZe8QH4qNpIBqEHFpVTrJVwkLCu5ds3+pbccosPAGFjP4J0AB15EXRr4rcAbXmibqr2600yb4dM8VbMHACFOCBZhZIxpWCMkDUZIBUQoKpooWCkAnBzOK5na/LqSSLTATYIaabQCteZkFlqs0bDPpuWAcNiRn6GWSnwrsatNVFIK0+WUGVX3p1UghXmamW9amFzoPHfP2Z3WLhW9ZEaq0DQiqOJyRC17MYwQA84eUDjyR/GOBNpNoO1pV6NwwsBZoAgBWz+M+YS5GC+Su1IEB0A5in0LwPQxXq7joeDPBdd3DzF6z96RTojxR29u8vE3GnO6jAa0MBmCuoxyYl/SDsbSpYIlMINttOUZndGWJ2JgBs8s7bw1GhnALOxFBnZayRRjt4bSvH+Ma9WNZSaKBoUDtDEQNIMt5XAZJIvEFZSahWUgL7ADIBAjZYJVAK8NHljSCRbLZdxbuCkFfrZVirL+GkBWYaJFCoglTaEWtiguhCVZNjj+c9eMUMbOVJQmcHOmKmRIKboAMkAbohUflNANgubKuhTXDGSlSKY0PetmdL+7bQoIJCVRY+osfasgH1NADQYBBoYd+dccoSIhapDyYkRkhkYGAZDWCMlJReDHnRJZKAxUYiJmPGYriVoGAkdW2QI785BQQakRBFiFEknMOMGpw8jj8a7sLaWrGrZ5gDnB2Ys6AFHfczh5BvVw8R6n1P4QHEbDeIf/i7kinChIP/Mpng="
|
23 |
+
kernels = Kernel(
|
24 |
+
bz2.decompress(base64.b64decode(quantization_code)),
|
25 |
+
[
|
26 |
+
"int4_to_fp16",
|
27 |
+
"fp16_to_int4",
|
28 |
+
"int8_to_fp16",
|
29 |
+
"fp16_to_int8",
|
30 |
+
"int4_to_bf16",
|
31 |
+
"bf16_to_int4",
|
32 |
+
"int8_to_bf16",
|
33 |
+
"bf16_to_int8",
|
34 |
+
],
|
35 |
+
)
|
36 |
+
except Exception as exception:
|
37 |
+
kernels = None
|
38 |
+
logger.warning("Failed to load kernels:" + str(exception))
|
39 |
+
|
40 |
+
def quant4(weight: torch.Tensor, scale: torch.Tensor):
|
41 |
+
stream = torch.cuda.current_stream()
|
42 |
+
num_row = weight.size(0)
|
43 |
+
num_chan_fp16 = weight.size(1)
|
44 |
+
# 4bit
|
45 |
+
num_chan_int = num_chan_fp16 // 8
|
46 |
+
qweight = torch.zeros((num_row, num_chan_int), dtype=torch.int32, device=weight.device)
|
47 |
+
intweight = torch.empty(num_row, num_chan_fp16, dtype = torch.int32)
|
48 |
+
intweight = torch.clip(torch.round(weight.to(scale.dtype) / scale[:, None]),-16, 15).to(dtype=torch.int32)
|
49 |
+
|
50 |
+
for j in range(num_chan_int):
|
51 |
+
qweight[:, j] = ((intweight[:, j*8+7] & 0x0f) << 28) \
|
52 |
+
| ((intweight[:, j*8+6] & 0x0f) << 24) \
|
53 |
+
| ((intweight[:, j*8+5] & 0x0f) << 20) \
|
54 |
+
| ((intweight[:, j*8+4] & 0x0f) << 16) \
|
55 |
+
| ((intweight[:, j*8+3] & 0x0f) << 12) \
|
56 |
+
| ((intweight[:, j*8+2] & 0x0f) << 8) \
|
57 |
+
| ((intweight[:, j*8+1] & 0x0f) << 4) \
|
58 |
+
| ((intweight[:, j*8] & 0x0f))
|
59 |
+
return qweight
|
60 |
+
|
61 |
+
def dequant4(qweight: torch.Tensor, scale: torch.Tensor, input: torch.Tensor):
|
62 |
+
stream = torch.cuda.current_stream()
|
63 |
+
num_row = qweight.size(0)
|
64 |
+
num_chan_int = qweight.size(1)
|
65 |
+
# 4bit
|
66 |
+
num_chan_fp16 = num_chan_int * 8
|
67 |
+
|
68 |
+
out = torch.empty((num_row, num_chan_fp16), dtype=input.dtype, device=qweight.device)
|
69 |
+
|
70 |
+
blockDim = (128, 1, 1)
|
71 |
+
gridDim = ((num_chan_int + blockDim[0] - 1) // blockDim[0], num_row, 1)
|
72 |
+
if input.dtype == torch.bfloat16:
|
73 |
+
kernels.int4_to_bf16(
|
74 |
+
gridDim,
|
75 |
+
blockDim,
|
76 |
+
0,
|
77 |
+
stream,
|
78 |
+
[ctypes.c_void_p(out.data_ptr()), ctypes.c_void_p(qweight.data_ptr()),
|
79 |
+
ctypes.c_void_p(scale.data_ptr()), ctypes.c_int32(num_row), ctypes.c_int32(num_chan_int), ctypes.c_int32(num_chan_fp16)],
|
80 |
+
)
|
81 |
+
elif input.dtype == torch.float16:
|
82 |
+
kernels.int4_to_fp16(
|
83 |
+
gridDim,
|
84 |
+
blockDim,
|
85 |
+
0,
|
86 |
+
stream,
|
87 |
+
[ctypes.c_void_p(out.data_ptr()), ctypes.c_void_p(qweight.data_ptr()),
|
88 |
+
ctypes.c_void_p(scale.data_ptr()), ctypes.c_int32(num_row), ctypes.c_int32(num_chan_int), ctypes.c_int32(num_chan_fp16)],
|
89 |
+
)
|
90 |
+
return out
|
91 |
|
92 |
class QLinear(torch.nn.Module):
|
93 |
def __init__(self, bits: int, weight: torch.Tensor, bias=None):
|
94 |
super().__init__()
|
95 |
self.quant_bits = bits
|
|
|
|
|
|
|
|
|
96 |
self.scale = weight.abs().max(dim=-1).values / ((2 ** (bits - 1)) - 1)
|
97 |
+
self.scale = self.scale.to(torch.float32)
|
98 |
+
if self.quant_bits == 4:
|
99 |
+
self.weight = quant4(weight, self.scale)
|
100 |
+
elif self.quant_bits == 8:
|
101 |
+
self.weight = torch.round(weight.to(self.scale.dtype) / self.scale[:, None]).to(torch.int8)
|
102 |
+
if self.quant_bits == 8:
|
103 |
+
self.weight = self.weight.T
|
104 |
self.bias = None
|
105 |
|
106 |
def forward(self, input):
|
107 |
+
if self.quant_bits == 4:
|
108 |
+
assert(input.dtype == torch.bfloat16 or input.dtype == torch.float16)
|
109 |
+
|
110 |
if self.weight.device != input.device:
|
111 |
self.weight = self.weight.to(input.device)
|
112 |
self.scale = self.scale.to(input.device)
|
113 |
|
114 |
+
if self.quant_bits == 4:
|
115 |
+
self.scale = self.scale.to(input.dtype)
|
116 |
+
rweight = dequant4(self.weight, self.scale, input).T
|
117 |
+
output = torch.matmul(input, rweight)
|
118 |
+
elif self.quant_bits == 8:
|
119 |
+
rweight = self.weight.to(input.dtype) * self.scale.to(input.dtype)
|
120 |
+
output = torch.matmul(input, rweight)
|
121 |
if self.bias is not None:
|
122 |
output = output + self.bias
|
123 |
return output
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
accelerate
|
2 |
+
colorama
|
3 |
+
cpm_kernels
|
4 |
+
sentencepiece
|
5 |
+
streamlit
|
6 |
+
transformers_stream_generator
|
tokenization_baichuan.py
CHANGED
@@ -1,9 +1,10 @@
|
|
|
|
|
|
1 |
import os
|
2 |
from shutil import copyfile
|
3 |
from typing import Any, Dict, List, Optional, Tuple
|
4 |
|
5 |
import sentencepiece as spm
|
6 |
-
|
7 |
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
|
8 |
from transformers.utils import logging
|
9 |
|
|
|
1 |
+
# Copyright (c) 2023, Baichuan Intelligent Technology. All rights reserved.
|
2 |
+
|
3 |
import os
|
4 |
from shutil import copyfile
|
5 |
from typing import Any, Dict, List, Optional, Tuple
|
6 |
|
7 |
import sentencepiece as spm
|
|
|
8 |
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
|
9 |
from transformers.utils import logging
|
10 |
|