s-JoL commited on
Commit
b436f25
1 Parent(s): 59628bb

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -6
README.md CHANGED
@@ -5,12 +5,12 @@ language:
5
  pipeline_tag: text-generation
6
  inference: false
7
  ---
8
- # Baichuan-13B
9
 
10
  <!-- Provide a quick summary of what the model is/does. -->
11
 
12
  ## 介绍
13
- Baichuan-13B 是由百川智能继 [Baichuan-7B](https://github.com/baichuan-inc/baichuan-7B) 之后开发的包含 130 亿参数的开源可商用的大规模语言模型,在标准的中文和英文 benchmark上均取得同尺寸最好的效果。本次发布包含有预训练 (Baichuan-13B-Base) 和对齐 (Baichuan-13B-Chat) 两个版本。Baichuan-13B 有如下几个特点:
14
 
15
  1. **开源可商用百亿级别中文语言模型**:Baichuan-13B-Base 是免费开源可商用的百亿级别中文预训练语言模型。包含有130亿参数,没有经过任何 Instruction Tuning 或者针对 benchmark 的优化,纯净、高可定制。弥补了在中文领域缺乏 100 亿以上高可用中文预训练大模型的短板。
16
  2. **更大尺寸、更多数据**:在 Baichuan-7B 的基础上进一步扩大参数量到 130 亿,并且在高质量的语料上训练了 1.4 万亿 tokens,是当前开源 13B 尺寸下训练数据量最多的模型。支持中英双语,使用 [ALiBi](https://arxiv.org/abs/2108.12409) 位置编码,上下文窗口长度为 4096。
@@ -30,11 +30,11 @@ Baichuan-13B is an open-source, commercially available large-scale language mode
30
 
31
  ## How to Get Started with the Model
32
 
33
- 如下是一个使用Baichuan-13B进行1-shot推理的任务,根据作品给出作者名,正确输出为"夜雨寄北->李商隐"
34
  ```python
35
  from transformers import AutoModelForCausalLM, AutoTokenizer
36
 
37
- tokenizer = AutoTokenizer.from_pretrained("baichuan-inc/Baichuan-13B", trust_remote_code=True)
38
  model = AutoModelForCausalLM.from_pretrained("baichuan-inc/Baichuan-13B", device_map="auto", trust_remote_code=True)
39
  inputs = tokenizer('登鹳雀楼->王之涣\n夜雨寄北->', return_tensors='pt')
40
  inputs = inputs.to('cuda:0')
@@ -42,11 +42,11 @@ pred = model.generate(**inputs, max_new_tokens=64,repetition_penalty=1.1)
42
  print(tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))
43
  ```
44
 
45
- The following is a task of performing 1-shot inference using Baichuan-13B, where the author's name is given based on the work, with the correct output being "One Hundred Years of Solitude->Gabriel Garcia Marquez"
46
  ```python
47
  from transformers import AutoModelForCausalLM, AutoTokenizer
48
 
49
- tokenizer = AutoTokenizer.from_pretrained("baichuan-inc/Baichuan-13B", trust_remote_code=True)
50
  model = AutoModelForCausalLM.from_pretrained("baichuan-inc/Baichuan-13B", device_map="auto", trust_remote_code=True)
51
  inputs = tokenizer('Hamlet->Shakespeare\nOne Hundred Years of Solitude->', return_tensors='pt')
52
  inputs = inputs.to('cuda:0')
 
5
  pipeline_tag: text-generation
6
  inference: false
7
  ---
8
+ # Baichuan-13B-Base
9
 
10
  <!-- Provide a quick summary of what the model is/does. -->
11
 
12
  ## 介绍
13
+ Baichuan-13B-Base 是由百川智能继 [Baichuan-7B](https://github.com/baichuan-inc/baichuan-7B) 之后开发的包含 130 亿参数的开源可商用的大规模语言模型,在标准的中文和英文 benchmark上均取得同尺寸最好的效果。本次发布包含有预训练 (Baichuan-13B-Base) 和对齐 (Baichuan-13B-Chat) 两个版本。Baichuan-13B 有如下几个特点:
14
 
15
  1. **开源可商用百亿级别中文语言模型**:Baichuan-13B-Base 是免费开源可商用的百亿级别中文预训练语言模型。包含有130亿参数,没有经过任何 Instruction Tuning 或者针对 benchmark 的优化,纯净、高可定制。弥补了在中文领域缺乏 100 亿以上高可用中文预训练大模型的短板。
16
  2. **更大尺寸、更多数据**:在 Baichuan-7B 的基础上进一步扩大参数量到 130 亿,并且在高质量的语料上训练了 1.4 万亿 tokens,是当前开源 13B 尺寸下训练数据量最多的模型。支持中英双语,使用 [ALiBi](https://arxiv.org/abs/2108.12409) 位置编码,上下文窗口长度为 4096。
 
30
 
31
  ## How to Get Started with the Model
32
 
33
+ 如下是一个使用Baichuan-13B-Base进行1-shot推理的任务,根据作品给出作者名,正确输出为"夜雨寄北->李商隐"
34
  ```python
35
  from transformers import AutoModelForCausalLM, AutoTokenizer
36
 
37
+ tokenizer = AutoTokenizer.from_pretrained("baichuan-inc/Baichuan-13B-Base", trust_remote_code=True)
38
  model = AutoModelForCausalLM.from_pretrained("baichuan-inc/Baichuan-13B", device_map="auto", trust_remote_code=True)
39
  inputs = tokenizer('登鹳雀楼->王之涣\n夜雨寄北->', return_tensors='pt')
40
  inputs = inputs.to('cuda:0')
 
42
  print(tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))
43
  ```
44
 
45
+ The following is a task of performing 1-shot inference using Baichuan-13B-Base, where the author's name is given based on the work, with the correct output being "One Hundred Years of Solitude->Gabriel Garcia Marquez"
46
  ```python
47
  from transformers import AutoModelForCausalLM, AutoTokenizer
48
 
49
+ tokenizer = AutoTokenizer.from_pretrained("baichuan-inc/Baichuan-13B-Base", trust_remote_code=True)
50
  model = AutoModelForCausalLM.from_pretrained("baichuan-inc/Baichuan-13B", device_map="auto", trust_remote_code=True)
51
  inputs = tokenizer('Hamlet->Shakespeare\nOne Hundred Years of Solitude->', return_tensors='pt')
52
  inputs = inputs.to('cuda:0')