|
|
|
|
|
import math |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.utils.checkpoint |
|
import torch.nn.functional as F |
|
from torch import nn |
|
from torch.nn import CrossEntropyLoss |
|
from transformers import PreTrainedModel |
|
from transformers.activations import ACT2FN |
|
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast |
|
from transformers.utils import logging |
|
|
|
from .configuration_baichuan import BaichuanConfig |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
|
|
def _make_causal_mask( |
|
input_ids_shape: torch.Size, device: torch.device, past_key_values_length: int |
|
) -> torch.BoolTensor: |
|
""" |
|
Make causal mask used for self-attention. |
|
""" |
|
batch_size, target_length = input_ids_shape |
|
mask = torch.empty((target_length, target_length + past_key_values_length), dtype=torch.bool, device=device) |
|
|
|
seq_ids = torch.arange(target_length, device=device) |
|
mask[:, past_key_values_length:] = seq_ids[:, None] < seq_ids[None, :] |
|
|
|
if past_key_values_length > 0: |
|
mask[:, :past_key_values_length] = False |
|
|
|
expanded_mask = mask[None, None, :, :].expand(batch_size, 1, target_length, target_length + past_key_values_length) |
|
return expanded_mask |
|
|
|
|
|
|
|
def _expand_mask(mask: torch.Tensor, tgt_length: int) -> torch.BoolTensor: |
|
""" |
|
Expands attention_mask from `[batch_size, src_length]` to `[batch_size, 1, tgt_length, src_length]`. |
|
""" |
|
batch_size, src_length = mask.shape |
|
tgt_length = tgt_length if tgt_length is not None else src_length |
|
|
|
expanded_mask = ~(mask[:, None, None, :].to(torch.bool)) |
|
return expanded_mask.expand(batch_size, 1, tgt_length, src_length) |
|
|
|
|
|
|
|
def build_alibi_tensor(attention_mask: torch.Tensor, num_heads: int, dtype: torch.dtype) -> torch.Tensor: |
|
""" |
|
Link to paper: https://arxiv.org/abs/2108.12409 Alibi tensor is not causal as the original paper mentions, it |
|
relies on a translation invariance of softmax for quick implementation: with l being a tensor, and a fixed value |
|
`softmax(l+a) = softmax(l)`. |
|
|
|
Args: |
|
Returns tensor shaped (batch_size * num_heads, 1, max_seq_len) |
|
attention_mask (`torch.Tensor`): |
|
Token-wise attention mask, this should be of shape (batch_size, max_seq_len). |
|
num_heads (`int`, *required*): |
|
number of heads |
|
dtype (`torch.dtype`, *optional*, default=`torch.bfloat16`): |
|
dtype of the output tensor |
|
""" |
|
batch_size, seq_length = attention_mask.shape |
|
closest_power_of_2 = 2 ** math.floor(math.log2(num_heads)) |
|
base = torch.tensor( |
|
2 ** (-(2 ** -(math.log2(closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32 |
|
) |
|
powers = torch.arange(1, 1 + closest_power_of_2, device=attention_mask.device, dtype=torch.int32) |
|
slopes = torch.pow(base, powers) |
|
|
|
if closest_power_of_2 != num_heads: |
|
extra_base = torch.tensor( |
|
2 ** (-(2 ** -(math.log2(2 * closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32 |
|
) |
|
num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2) |
|
extra_powers = torch.arange(1, 1 + 2 * num_remaining_heads, 2, device=attention_mask.device, dtype=torch.int32) |
|
slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0) |
|
|
|
|
|
|
|
|
|
|
|
arange_tensor = ((attention_mask.cumsum(dim=-1) - 1) * attention_mask)[:, None, :] |
|
alibi = slopes[..., None] * arange_tensor |
|
return alibi.reshape(batch_size * num_heads, 1, seq_length).to(dtype) |
|
|
|
|
|
class RMSNorm(nn.Module): |
|
|
|
def __init__(self, hidden_size, epsilon=1e-6): |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
self.epsilon = epsilon |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
input_dtype = hidden_states.dtype |
|
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True) |
|
hidden_states = hidden_states * torch.rsqrt(variance + self.epsilon) |
|
|
|
return (self.weight * hidden_states).to(input_dtype) |
|
|
|
|
|
class MLP(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
hidden_size: int, |
|
intermediate_size: int, |
|
hidden_act: str, |
|
): |
|
super().__init__() |
|
self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False) |
|
self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False) |
|
self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False) |
|
self.act_fn = ACT2FN[hidden_act] |
|
|
|
def forward(self, x): |
|
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) |
|
|
|
|
|
class BaichuanAttention(nn.Module): |
|
|
|
def __init__(self, config: BaichuanConfig): |
|
super().__init__() |
|
self.config = config |
|
self.hidden_size = config.hidden_size |
|
self.num_heads = config.num_attention_heads |
|
self.head_dim = self.hidden_size // self.num_heads |
|
self.max_position_embeddings = config.model_max_length |
|
|
|
if (self.head_dim * self.num_heads) != self.hidden_size: |
|
raise ValueError( |
|
f"hidden_size {self.hidden_size} is not divisible by num_heads {self.num_heads}" |
|
) |
|
|
|
|
|
self.inv_norm_factor = 1.0 / math.sqrt(self.head_dim) |
|
self.beta = 1.0 |
|
|
|
self.W_pack = nn.Linear(self.hidden_size, 3 * self.hidden_size, bias=False) |
|
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) |
|
|
|
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): |
|
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
alibi: torch.Tensor, |
|
attention_mask: torch.Tensor, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
|
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
proj = self.W_pack(hidden_states) |
|
proj = proj.unflatten(-1, (3, self.hidden_size)).unsqueeze(0).transpose(0, -2).squeeze(-2) |
|
query_states = proj[0].view(bsz, q_len, self.num_heads, self.head_dim) |
|
key_states = proj[1].view(bsz, q_len, self.num_heads, self.head_dim) |
|
value_states = proj[2].view(bsz, q_len, self.num_heads, self.head_dim) |
|
|
|
query_states = query_states.transpose(1, 2).reshape(bsz * self.num_heads, q_len, self.head_dim) |
|
key_states = key_states.permute(0, 2, 3, 1).reshape(bsz * self.num_heads, self.head_dim, q_len) |
|
value_states = value_states.transpose(1, 2).reshape(bsz * self.num_heads, q_len, self.head_dim) |
|
|
|
if past_key_value is not None: |
|
|
|
past_key, past_value = past_key_value |
|
key_states = torch.cat([past_key, key_states], dim=2) |
|
value_states = torch.cat([past_value, value_states], dim=1) |
|
|
|
_, _, kv_seq_len = key_states.shape |
|
|
|
past_key_value = (key_states, value_states) if use_cache else None |
|
|
|
|
|
|
|
matmul_result = alibi.baddbmm( |
|
batch1=query_states, |
|
batch2=key_states, |
|
beta=self.beta, |
|
alpha=self.inv_norm_factor, |
|
) |
|
|
|
|
|
attention_scores = matmul_result.view(bsz, self.num_heads, q_len, kv_seq_len) |
|
|
|
|
|
|
|
input_dtype = attention_scores.dtype |
|
|
|
if input_dtype == torch.float16: |
|
attention_scores = attention_scores.to(torch.float) |
|
attn_weights = torch.masked_fill(attention_scores, attention_mask, torch.finfo(attention_scores.dtype).min) |
|
attention_probs = F.softmax(attn_weights, dim=-1, dtype=torch.float32).to(input_dtype) |
|
|
|
|
|
attention_probs_reshaped = attention_probs.view(bsz * self.num_heads, q_len, kv_seq_len) |
|
|
|
|
|
attn_output = torch.bmm(attention_probs_reshaped, value_states) |
|
|
|
attn_output = attn_output.view(bsz, self.num_heads, q_len, self.head_dim) |
|
|
|
attn_output = attn_output.transpose(1, 2).reshape(bsz, q_len, self.hidden_size) |
|
attn_output = self.o_proj(attn_output) |
|
|
|
if not output_attentions: |
|
attention_probs = None |
|
|
|
return attn_output, attention_probs, past_key_value |
|
|
|
|
|
class BaichuanLayer(nn.Module): |
|
|
|
def __init__(self, config: BaichuanConfig): |
|
super().__init__() |
|
self.hidden_size = config.hidden_size |
|
self.self_attn = BaichuanAttention(config=config) |
|
self.mlp = MLP( |
|
hidden_size=self.hidden_size, |
|
intermediate_size=config.intermediate_size, |
|
hidden_act=config.hidden_act, |
|
) |
|
self.input_layernorm = RMSNorm(config.hidden_size, epsilon=config.rms_norm_eps) |
|
self.post_attention_layernorm = RMSNorm(config.hidden_size, epsilon=config.rms_norm_eps) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
alibi: torch.Tensor, |
|
attention_mask: torch.Tensor, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: Optional[bool] = False, |
|
use_cache: Optional[bool] = False, |
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: |
|
|
|
residual = hidden_states |
|
|
|
hidden_states = self.input_layernorm(hidden_states) |
|
|
|
|
|
hidden_states, self_attn_weights, present_key_value = self.self_attn( |
|
hidden_states=hidden_states, |
|
alibi=alibi, |
|
attention_mask=attention_mask, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
) |
|
hidden_states = residual + hidden_states |
|
|
|
|
|
residual = hidden_states |
|
hidden_states = self.post_attention_layernorm(hidden_states) |
|
hidden_states = self.mlp(hidden_states) |
|
hidden_states = residual + hidden_states |
|
|
|
outputs = (hidden_states,) |
|
|
|
if output_attentions: |
|
outputs += (self_attn_weights,) |
|
|
|
if use_cache: |
|
outputs += (present_key_value,) |
|
|
|
return outputs |
|
|
|
|
|
class BaichuanPreTrainedModel(PreTrainedModel): |
|
config_class = BaichuanConfig |
|
base_model_prefix = "model" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["BaichuanLayer"] |
|
_skip_keys_device_placement = "past_key_values" |
|
_keys_to_ignore_on_load_unexpected = [r"decoder\.version"] |
|
|
|
def _init_weights(self, module): |
|
std = self.config.initializer_range |
|
if isinstance(module, nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if isinstance(module, BaichuanModel): |
|
module.gradient_checkpointing = value |
|
|
|
|
|
class BaichuanModel(BaichuanPreTrainedModel): |
|
|
|
def __init__(self, config: BaichuanConfig): |
|
super().__init__(config) |
|
self.padding_idx = config.pad_token_id |
|
self.vocab_size = config.vocab_size |
|
self.n_head = config.num_attention_heads |
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) |
|
self.layers = nn.ModuleList([BaichuanLayer(config) for _ in range(config.num_hidden_layers)]) |
|
self.norm = RMSNorm(config.hidden_size, epsilon=config.rms_norm_eps) |
|
|
|
self.gradient_checkpointing = config.gradient_checkpointing |
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.embed_tokens = value |
|
|
|
def build_alibi_tensor(self, attention_mask: torch.Tensor, num_heads: int, dtype: torch.dtype) -> torch.Tensor: |
|
return build_alibi_tensor(attention_mask, num_heads, dtype) |
|
|
|
def _prepare_attn_mask( |
|
self, attention_mask: torch.Tensor, input_shape: Tuple[int, int], past_key_values_length: int |
|
) -> torch.BoolTensor: |
|
|
|
|
|
combined_attention_mask = None |
|
device = attention_mask.device |
|
_, src_length = input_shape |
|
|
|
if src_length > 1: |
|
combined_attention_mask = _make_causal_mask( |
|
input_shape, device=device, past_key_values_length=past_key_values_length |
|
) |
|
|
|
|
|
expanded_attn_mask = _expand_mask(attention_mask, tgt_length=src_length) |
|
combined_attention_mask = ( |
|
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask | combined_attention_mask |
|
) |
|
|
|
return combined_attention_mask |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPast]: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot provide both input_ids and inputs_embeds simultaneously") |
|
elif input_ids is not None: |
|
batch_size, seq_length = input_ids.shape |
|
elif inputs_embeds is not None: |
|
batch_size, seq_length, _ = inputs_embeds.shape |
|
else: |
|
raise ValueError("You need to provide input_ids or inputs_embeds") |
|
|
|
seq_length_with_past = seq_length |
|
past_key_values_length = 0 |
|
if past_key_values is not None: |
|
past_key_values_length = past_key_values[0][0].shape[1] |
|
seq_length_with_past = seq_length_with_past + past_key_values_length |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
hidden_states = inputs_embeds |
|
|
|
if attention_mask is None: |
|
attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device) |
|
else: |
|
attention_mask = attention_mask.to(hidden_states.device) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
|
|
alibi = self.build_alibi_tensor(attention_mask, self.n_head, dtype=hidden_states.dtype) |
|
|
|
causal_mask = self._prepare_attn_mask( |
|
attention_mask, |
|
input_shape=(batch_size, seq_length), |
|
past_key_values_length=past_key_values_length, |
|
) |
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attns = () if output_attentions else None |
|
next_decoder_cache = () if use_cache else None |
|
|
|
for idx, decoder_layer in enumerate(self.layers): |
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
past_key_value = past_key_values[idx] if past_key_values is not None else None |
|
|
|
if self.gradient_checkpointing and self.training: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
|
|
return module(*inputs, output_attentions, None) |
|
|
|
return custom_forward |
|
|
|
layer_outputs = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(decoder_layer), |
|
hidden_states, |
|
alibi, |
|
causal_mask, |
|
None, |
|
) |
|
else: |
|
layer_outputs = decoder_layer( |
|
hidden_states, |
|
alibi=alibi, |
|
attention_mask=causal_mask, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if use_cache: |
|
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) |
|
|
|
if output_attentions: |
|
all_self_attns += (layer_outputs[1],) |
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
next_cache = next_decoder_cache if use_cache else None |
|
|
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) |
|
|
|
return BaseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=next_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
) |
|
|
|
|
|
class BaichuanForCausalLM(BaichuanPreTrainedModel): |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.model = BaichuanModel(config) |
|
|
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.model.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.embed_tokens = value |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
def set_decoder(self, decoder): |
|
self.model = decoder |
|
|
|
def get_decoder(self): |
|
return self.model |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
**kwargs |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
outputs = self.model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
logits = self.lm_head(hidden_states) |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
loss_fct = CrossEntropyLoss() |
|
shift_logits = shift_logits.view(-1, self.config.vocab_size) |
|
shift_labels = shift_labels.view(-1) |
|
|
|
shift_labels = shift_labels.to(shift_logits.device) |
|
loss = loss_fct(shift_logits, shift_labels) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return (loss,) + output if loss is not None else output |
|
|
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
def prepare_inputs_for_generation( |
|
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs |
|
): |
|
if past_key_values: |
|
input_ids = input_ids[:, -1:] |
|
|
|
|
|
if inputs_embeds is not None and past_key_values is None: |
|
model_inputs = {"inputs_embeds": inputs_embeds} |
|
else: |
|
model_inputs = {"input_ids": input_ids} |
|
|
|
model_inputs.update( |
|
{ |
|
"past_key_values": past_key_values, |
|
"use_cache": kwargs.get("use_cache"), |
|
"attention_mask": attention_mask, |
|
} |
|
) |
|
return model_inputs |
|
|
|
@staticmethod |
|
def _reorder_cache(past_key_values, beam_idx): |
|
return tuple( |
|
tuple(past_state.index_select(0, beam_idx) for past_state in layer_past) |
|
for layer_past in past_key_values |
|
) |
|
|
|
|
|
def quantize(self, bits: int): |
|
try: |
|
from .quantizer import QLinear |
|
except ImportError: |
|
raise ImportError( |
|
f"Needs QLinear to run quantize." |
|
) |
|
|
|
for layer in self.model.layers: |
|
layer.self_attn.W_pack = QLinear( |
|
bits=bits, |
|
weight=layer.self_attn.W_pack.weight, |
|
bias = None, |
|
) |
|
layer.self_attn.o_proj = QLinear( |
|
bits=bits, |
|
weight=layer.self_attn.o_proj.weight, |
|
bias = None, |
|
) |
|
layer.mlp.gate_proj = QLinear( |
|
bits=bits, |
|
weight=layer.mlp.gate_proj.weight, |
|
bias = None, |
|
) |
|
layer.mlp.down_proj = QLinear( |
|
bits=bits, |
|
weight=layer.mlp.down_proj.weight, |
|
bias = None, |
|
) |
|
layer.mlp.up_proj = QLinear( |
|
bits=bits, |
|
weight=layer.mlp.up_proj.weight, |
|
bias = None, |
|
) |
|
return self |
|
|
|
def _build_chat_input(self, tokenizer, messages: List[dict], max_new_tokens: int=0): |
|
max_new_tokens = max_new_tokens or self.generation_config.max_new_tokens |
|
max_input_tokens = self.config.model_max_length - max_new_tokens |
|
max_input_tokens = max(self.config.model_max_length // 2, max_input_tokens) |
|
total_input, round_input = [], [] |
|
for i, message in enumerate(messages[::-1]): |
|
content_tokens = tokenizer.encode(message['content']) |
|
if message['role'] == 'user': |
|
round_input = [self.generation_config.user_token_id] + content_tokens + round_input |
|
if total_input and len(total_input) + len(round_input) > max_input_tokens: |
|
break |
|
else: |
|
total_input = round_input + total_input |
|
if len(total_input) >= max_input_tokens: |
|
break |
|
else: |
|
round_input = [] |
|
elif message['role'] == 'assistant': |
|
round_input = [ |
|
self.generation_config.assistant_token_id |
|
] + content_tokens + [ |
|
self.generation_config.eos_token_id |
|
] + round_input |
|
else: |
|
raise ValueError(f"message role not supported yet: {message['role']}") |
|
total_input = total_input[-max_input_tokens:] |
|
total_input.append(self.generation_config.assistant_token_id) |
|
total_input = torch.LongTensor([total_input]).to(self.device) |
|
return total_input |
|
|
|
@torch.no_grad() |
|
def chat(self, tokenizer, messages: List[dict], stream=False, |
|
generation_config: Optional[GenerationConfig]=None): |
|
generation_config = generation_config or self.generation_config |
|
input_ids = self._build_chat_input(tokenizer, messages, generation_config.max_new_tokens) |
|
if stream: |
|
from transformers_stream_generator.main import NewGenerationMixin, StreamGenerationConfig |
|
self.__class__.generate = NewGenerationMixin.generate |
|
self.__class__.sample_stream = NewGenerationMixin.sample_stream |
|
stream_config = StreamGenerationConfig(**generation_config.to_dict(), do_stream=True) |
|
|
|
def stream_generator(): |
|
outputs = [] |
|
for token in self.generate(input_ids, generation_config=stream_config): |
|
outputs.append(token.item()) |
|
yield tokenizer.decode(outputs, skip_special_tokens=True) |
|
|
|
return stream_generator() |
|
else: |
|
self.__class__.generate = PreTrainedModel.generate |
|
outputs = self.generate(input_ids, generation_config=generation_config) |
|
response = tokenizer.decode(outputs[0][len(input_ids[0]):], skip_special_tokens=True) |
|
return response |
|
|