swin-tiny-patch4-window7-224-finetuned-st-ucimhar-stacked-tiny
This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.2422
- Accuracy: 0.7833
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 12
- eval_batch_size: 12
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 48
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 200
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.7491 | 0.9977 | 107 | 1.6778 | 0.3781 |
1.3073 | 1.9953 | 214 | 1.1312 | 0.5299 |
1.011 | 2.9930 | 321 | 0.9034 | 0.5961 |
0.922 | 4.0 | 429 | 0.7951 | 0.6179 |
0.8234 | 4.9977 | 536 | 0.6725 | 0.6709 |
0.7737 | 5.9953 | 643 | 0.7821 | 0.6319 |
0.7946 | 6.9930 | 750 | 0.6644 | 0.6854 |
0.8128 | 8.0 | 858 | 0.7123 | 0.6582 |
0.715 | 8.9977 | 965 | 0.6771 | 0.6759 |
0.7034 | 9.9953 | 1072 | 0.6267 | 0.7090 |
0.6079 | 10.9930 | 1179 | 0.6672 | 0.6895 |
0.6178 | 12.0 | 1287 | 0.6762 | 0.6750 |
0.6561 | 12.9977 | 1394 | 0.5786 | 0.7085 |
0.6171 | 13.9953 | 1501 | 0.5703 | 0.7244 |
0.6261 | 14.9930 | 1608 | 0.6156 | 0.7058 |
0.646 | 16.0 | 1716 | 0.6111 | 0.7203 |
0.5834 | 16.9977 | 1823 | 0.5608 | 0.7407 |
0.5469 | 17.9953 | 1930 | 0.5682 | 0.7425 |
0.5964 | 18.9930 | 2037 | 0.5712 | 0.7452 |
0.6095 | 20.0 | 2145 | 0.5856 | 0.7226 |
0.5992 | 20.9977 | 2252 | 0.6288 | 0.7085 |
0.5572 | 21.9953 | 2359 | 0.6966 | 0.7049 |
0.4914 | 22.9930 | 2466 | 0.6251 | 0.7131 |
0.5694 | 24.0 | 2574 | 0.5781 | 0.7407 |
0.5108 | 24.9977 | 2681 | 0.5544 | 0.7493 |
0.4507 | 25.9953 | 2788 | 0.5737 | 0.7421 |
0.5308 | 26.9930 | 2895 | 0.5404 | 0.7529 |
0.4754 | 28.0 | 3003 | 0.5940 | 0.7439 |
0.4562 | 28.9977 | 3110 | 0.5465 | 0.7507 |
0.4617 | 29.9953 | 3217 | 0.5298 | 0.7665 |
0.4347 | 30.9930 | 3324 | 0.5796 | 0.7566 |
0.466 | 32.0 | 3432 | 0.5378 | 0.7602 |
0.4335 | 32.9977 | 3539 | 0.5227 | 0.7724 |
0.4335 | 33.9953 | 3646 | 0.6071 | 0.7471 |
0.492 | 34.9930 | 3753 | 0.5336 | 0.7715 |
0.3798 | 36.0 | 3861 | 0.5833 | 0.7679 |
0.4314 | 36.9977 | 3968 | 0.5538 | 0.7747 |
0.4269 | 37.9953 | 4075 | 0.5880 | 0.7616 |
0.3804 | 38.9930 | 4182 | 0.6006 | 0.7665 |
0.4089 | 40.0 | 4290 | 0.5728 | 0.7747 |
0.3446 | 40.9977 | 4397 | 0.5992 | 0.7747 |
0.3786 | 41.9953 | 4504 | 0.5686 | 0.7706 |
0.3944 | 42.9930 | 4611 | 0.6180 | 0.7634 |
0.3295 | 44.0 | 4719 | 0.5682 | 0.7743 |
0.3104 | 44.9977 | 4826 | 0.5924 | 0.7702 |
0.3465 | 45.9953 | 4933 | 0.6169 | 0.7765 |
0.3611 | 46.9930 | 5040 | 0.5923 | 0.7829 |
0.2893 | 48.0 | 5148 | 0.6474 | 0.7697 |
0.3345 | 48.9977 | 5255 | 0.7161 | 0.7575 |
0.2894 | 49.9953 | 5362 | 0.6239 | 0.7661 |
0.2979 | 50.9930 | 5469 | 0.6255 | 0.7765 |
0.2933 | 52.0 | 5577 | 0.6235 | 0.7729 |
0.3072 | 52.9977 | 5684 | 0.6996 | 0.7638 |
0.3179 | 53.9953 | 5791 | 0.6933 | 0.7792 |
0.2318 | 54.9930 | 5898 | 0.6738 | 0.7811 |
0.2083 | 56.0 | 6006 | 0.6706 | 0.7792 |
0.1927 | 56.9977 | 6113 | 0.7160 | 0.7806 |
0.2316 | 57.9953 | 6220 | 0.7098 | 0.7706 |
0.2582 | 58.9930 | 6327 | 0.7736 | 0.7656 |
0.257 | 60.0 | 6435 | 0.6893 | 0.7879 |
0.2449 | 60.9977 | 6542 | 0.7491 | 0.7820 |
0.2335 | 61.9953 | 6649 | 0.7232 | 0.7770 |
0.2251 | 62.9930 | 6756 | 0.7697 | 0.7733 |
0.2055 | 64.0 | 6864 | 0.7920 | 0.7679 |
0.1984 | 64.9977 | 6971 | 0.7432 | 0.7788 |
0.2104 | 65.9953 | 7078 | 0.7694 | 0.7652 |
0.2279 | 66.9930 | 7185 | 0.7625 | 0.7788 |
0.2356 | 68.0 | 7293 | 0.7823 | 0.7747 |
0.2097 | 68.9977 | 7400 | 0.8695 | 0.7711 |
0.2393 | 69.9953 | 7507 | 0.7937 | 0.7770 |
0.1599 | 70.9930 | 7614 | 0.8057 | 0.7792 |
0.1836 | 72.0 | 7722 | 0.7616 | 0.7883 |
0.1823 | 72.9977 | 7829 | 0.8693 | 0.7688 |
0.1938 | 73.9953 | 7936 | 0.8137 | 0.7647 |
0.1821 | 74.9930 | 8043 | 0.8643 | 0.7688 |
0.2125 | 76.0 | 8151 | 0.8180 | 0.7824 |
0.1872 | 76.9977 | 8258 | 0.9031 | 0.7684 |
0.219 | 77.9953 | 8365 | 0.8406 | 0.7738 |
0.1639 | 78.9930 | 8472 | 0.8814 | 0.7720 |
0.1532 | 80.0 | 8580 | 0.8852 | 0.7792 |
0.2049 | 80.9977 | 8687 | 0.8322 | 0.7788 |
0.1379 | 81.9953 | 8794 | 0.9790 | 0.7711 |
0.145 | 82.9930 | 8901 | 0.9681 | 0.7620 |
0.201 | 84.0 | 9009 | 0.9446 | 0.7801 |
0.1433 | 84.9977 | 9116 | 0.8740 | 0.7711 |
0.127 | 85.9953 | 9223 | 0.8781 | 0.7833 |
0.1646 | 86.9930 | 9330 | 0.8880 | 0.7815 |
0.1671 | 88.0 | 9438 | 0.9304 | 0.7733 |
0.123 | 88.9977 | 9545 | 0.9443 | 0.7738 |
0.1261 | 89.9953 | 9652 | 0.9818 | 0.7638 |
0.1143 | 90.9930 | 9759 | 0.9140 | 0.7738 |
0.1621 | 92.0 | 9867 | 0.8911 | 0.7733 |
0.1607 | 92.9977 | 9974 | 0.8875 | 0.7801 |
0.1501 | 93.9953 | 10081 | 0.9756 | 0.7652 |
0.1313 | 94.9930 | 10188 | 0.9266 | 0.7724 |
0.1304 | 96.0 | 10296 | 0.9165 | 0.7811 |
0.1178 | 96.9977 | 10403 | 0.8847 | 0.7806 |
0.1022 | 97.9953 | 10510 | 0.9896 | 0.7747 |
0.1535 | 98.9930 | 10617 | 0.9597 | 0.7634 |
0.1235 | 100.0 | 10725 | 1.0785 | 0.7811 |
0.1537 | 100.9977 | 10832 | 0.9804 | 0.7665 |
0.1034 | 101.9953 | 10939 | 1.0229 | 0.7747 |
0.1151 | 102.9930 | 11046 | 0.9565 | 0.7792 |
0.1207 | 104.0 | 11154 | 0.9972 | 0.7752 |
0.1004 | 104.9977 | 11261 | 1.0217 | 0.7693 |
0.1129 | 105.9953 | 11368 | 1.0180 | 0.7743 |
0.1461 | 106.9930 | 11475 | 1.0894 | 0.7634 |
0.1058 | 108.0 | 11583 | 1.0378 | 0.7801 |
0.1182 | 108.9977 | 11690 | 0.9832 | 0.7756 |
0.1234 | 109.9953 | 11797 | 0.9694 | 0.7915 |
0.0876 | 110.9930 | 11904 | 1.0163 | 0.7783 |
0.1114 | 112.0 | 12012 | 1.0190 | 0.7720 |
0.1102 | 112.9977 | 12119 | 1.0097 | 0.7788 |
0.1341 | 113.9953 | 12226 | 1.0256 | 0.7797 |
0.0925 | 114.9930 | 12333 | 1.0942 | 0.7797 |
0.099 | 116.0 | 12441 | 1.1353 | 0.7715 |
0.0949 | 116.9977 | 12548 | 1.0752 | 0.7765 |
0.0999 | 117.9953 | 12655 | 1.0974 | 0.7765 |
0.0942 | 118.9930 | 12762 | 1.0812 | 0.7761 |
0.1149 | 120.0 | 12870 | 1.0109 | 0.7824 |
0.1101 | 120.9977 | 12977 | 1.0238 | 0.7879 |
0.0971 | 121.9953 | 13084 | 1.0740 | 0.7724 |
0.1146 | 122.9930 | 13191 | 1.0517 | 0.7788 |
0.1378 | 124.0 | 13299 | 0.9993 | 0.7765 |
0.1491 | 124.9977 | 13406 | 1.0226 | 0.7797 |
0.0993 | 125.9953 | 13513 | 1.0196 | 0.7806 |
0.1103 | 126.9930 | 13620 | 1.0618 | 0.7829 |
0.0628 | 128.0 | 13728 | 1.1314 | 0.7752 |
0.125 | 128.9977 | 13835 | 1.0911 | 0.7806 |
0.1051 | 129.9953 | 13942 | 1.1129 | 0.7729 |
0.07 | 130.9930 | 14049 | 1.1152 | 0.7774 |
0.1128 | 132.0 | 14157 | 1.1385 | 0.7815 |
0.1186 | 132.9977 | 14264 | 1.0660 | 0.7915 |
0.0828 | 133.9953 | 14371 | 1.0861 | 0.7788 |
0.081 | 134.9930 | 14478 | 1.0989 | 0.7783 |
0.084 | 136.0 | 14586 | 1.0952 | 0.7770 |
0.0958 | 136.9977 | 14693 | 1.0558 | 0.7747 |
0.0943 | 137.9953 | 14800 | 1.0902 | 0.7833 |
0.055 | 138.9930 | 14907 | 1.1308 | 0.7797 |
0.0972 | 140.0 | 15015 | 1.0727 | 0.7842 |
0.0819 | 140.9977 | 15122 | 1.1066 | 0.7851 |
0.0885 | 141.9953 | 15229 | 1.1115 | 0.7752 |
0.0769 | 142.9930 | 15336 | 1.0922 | 0.7788 |
0.0668 | 144.0 | 15444 | 1.1498 | 0.7788 |
0.0836 | 144.9977 | 15551 | 1.1783 | 0.7729 |
0.1068 | 145.9953 | 15658 | 1.1379 | 0.7783 |
0.0656 | 146.9930 | 15765 | 1.1223 | 0.7806 |
0.0815 | 148.0 | 15873 | 1.1083 | 0.7783 |
0.06 | 148.9977 | 15980 | 1.1309 | 0.7783 |
0.0812 | 149.9953 | 16087 | 1.1336 | 0.7774 |
0.0771 | 150.9930 | 16194 | 1.1676 | 0.7833 |
0.0867 | 152.0 | 16302 | 1.1745 | 0.7824 |
0.075 | 152.9977 | 16409 | 1.1625 | 0.7779 |
0.0833 | 153.9953 | 16516 | 1.1656 | 0.7743 |
0.0788 | 154.9930 | 16623 | 1.1623 | 0.7783 |
0.0647 | 156.0 | 16731 | 1.1728 | 0.7788 |
0.0915 | 156.9977 | 16838 | 1.1869 | 0.7765 |
0.0814 | 157.9953 | 16945 | 1.1643 | 0.7824 |
0.0644 | 158.9930 | 17052 | 1.1955 | 0.7820 |
0.0899 | 160.0 | 17160 | 1.2017 | 0.7811 |
0.0746 | 160.9977 | 17267 | 1.1638 | 0.7801 |
0.0744 | 161.9953 | 17374 | 1.1992 | 0.7774 |
0.0868 | 162.9930 | 17481 | 1.2164 | 0.7824 |
0.0351 | 164.0 | 17589 | 1.2245 | 0.7738 |
0.0586 | 164.9977 | 17696 | 1.1803 | 0.7829 |
0.0558 | 165.9953 | 17803 | 1.2584 | 0.7756 |
0.0982 | 166.9930 | 17910 | 1.2349 | 0.7765 |
0.0711 | 168.0 | 18018 | 1.3022 | 0.7756 |
0.0416 | 168.9977 | 18125 | 1.1992 | 0.7783 |
0.053 | 169.9953 | 18232 | 1.2331 | 0.7752 |
0.0458 | 170.9930 | 18339 | 1.1994 | 0.7833 |
0.0698 | 172.0 | 18447 | 1.2182 | 0.7779 |
0.0823 | 172.9977 | 18554 | 1.2031 | 0.7788 |
0.0705 | 173.9953 | 18661 | 1.1887 | 0.7874 |
0.0489 | 174.9930 | 18768 | 1.2278 | 0.7733 |
0.0513 | 176.0 | 18876 | 1.2315 | 0.7824 |
0.0587 | 176.9977 | 18983 | 1.2252 | 0.7806 |
0.0291 | 177.9953 | 19090 | 1.2223 | 0.7788 |
0.0549 | 178.9930 | 19197 | 1.2333 | 0.7797 |
0.0433 | 180.0 | 19305 | 1.2576 | 0.7811 |
0.0859 | 180.9977 | 19412 | 1.2297 | 0.7820 |
0.1015 | 181.9953 | 19519 | 1.2171 | 0.7801 |
0.0396 | 182.9930 | 19626 | 1.2269 | 0.7783 |
0.0892 | 184.0 | 19734 | 1.2359 | 0.7824 |
0.0561 | 184.9977 | 19841 | 1.2501 | 0.7820 |
0.0391 | 185.9953 | 19948 | 1.2284 | 0.7869 |
0.0673 | 186.9930 | 20055 | 1.2562 | 0.7783 |
0.0464 | 188.0 | 20163 | 1.2398 | 0.7815 |
0.0798 | 188.9977 | 20270 | 1.2727 | 0.7792 |
0.0543 | 189.9953 | 20377 | 1.2414 | 0.7838 |
0.0421 | 190.9930 | 20484 | 1.2468 | 0.7811 |
0.0563 | 192.0 | 20592 | 1.2546 | 0.7833 |
0.0638 | 192.9977 | 20699 | 1.2530 | 0.7824 |
0.0571 | 193.9953 | 20806 | 1.2487 | 0.7824 |
0.05 | 194.9930 | 20913 | 1.2502 | 0.7797 |
0.0743 | 196.0 | 21021 | 1.2507 | 0.7797 |
0.0282 | 196.9977 | 21128 | 1.2481 | 0.7820 |
0.0629 | 197.9953 | 21235 | 1.2416 | 0.7829 |
0.0285 | 198.9930 | 21342 | 1.2423 | 0.7842 |
0.0475 | 199.5338 | 21400 | 1.2422 | 0.7833 |
Framework versions
- Transformers 4.44.0
- Pytorch 1.12.1+cu113
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 6
Model tree for ayubkfupm/swin-tiny-patch4-window7-224-finetuned-st-ucimhar-stacked-tiny
Base model
microsoft/swin-tiny-patch4-window7-224