File size: 2,700 Bytes
dd3f3b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0e900d
 
 
 
 
 
 
dd3f3b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0e900d
 
 
 
 
 
 
 
 
 
dd3f3b9
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- recall
- precision
model-index:
- name: wav2vec2-base-finetuned-common_voice
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-base-finetuned-common_voice

This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0002
- Accuracy: 1.0
- F1: 1.0
- Recall: 1.0
- Precision: 1.0
- Mcc: 1.0
- Auc: 1.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     | Recall | Precision | Mcc    | Auc    |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:|:------:|:------:|
| 0.3184        | 1.0   | 200  | 0.2012          | 0.97     | 0.9693 | 0.97   | 0.9721    | 0.9633 | 0.9965 |
| 0.0889        | 2.0   | 400  | 0.0144          | 0.995    | 0.9950 | 0.9950 | 0.9950    | 0.9938 | 1.0000 |
| 0.1011        | 3.0   | 600  | 0.0482          | 0.9925   | 0.9925 | 0.9925 | 0.9928    | 0.9907 | 0.9987 |
| 0.0007        | 4.0   | 800  | 0.0005          | 1.0      | 1.0    | 1.0    | 1.0       | 1.0    | 1.0    |
| 0.0005        | 5.0   | 1000 | 0.0003          | 1.0      | 1.0    | 1.0    | 1.0       | 1.0    | 1.0    |
| 0.0003        | 6.0   | 1200 | 0.0003          | 1.0      | 1.0    | 1.0    | 1.0       | 1.0    | 1.0    |
| 0.0004        | 7.0   | 1400 | 0.0002          | 1.0      | 1.0    | 1.0    | 1.0       | 1.0    | 1.0    |
| 0.0003        | 8.0   | 1600 | 0.0002          | 1.0      | 1.0    | 1.0    | 1.0       | 1.0    | 1.0    |
| 0.0003        | 9.0   | 1800 | 0.0002          | 1.0      | 1.0    | 1.0    | 1.0       | 1.0    | 1.0    |
| 0.0002        | 10.0  | 2000 | 0.0002          | 1.0      | 1.0    | 1.0    | 1.0       | 1.0    | 1.0    |


### Framework versions

- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1