--- base_model: microsoft/unispeech-sat-base tags: - generated_from_trainer metrics: - accuracy - f1 - recall - precision model-index: - name: unispeech-sat-base-finetuned-common_voice results: [] --- # unispeech-sat-base-finetuned-common_voice This model is a fine-tuned version of [microsoft/unispeech-sat-base](https://huggingface.co/microsoft/unispeech-sat-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0526 - Accuracy: 0.9925 - F1: 0.9925 - Recall: 0.9925 - Precision: 0.9927 - Mcc: 0.9907 - Auc: 0.9994 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | Mcc | Auc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:|:------:|:------:| | 0.2855 | 1.0 | 200 | 0.1316 | 0.9675 | 0.9676 | 0.9675 | 0.9687 | 0.9596 | 0.9977 | | 0.0865 | 2.0 | 400 | 0.0724 | 0.9825 | 0.9825 | 0.9825 | 0.9833 | 0.9783 | 0.9999 | | 0.0536 | 3.0 | 600 | 0.0436 | 0.9925 | 0.9925 | 0.9925 | 0.9926 | 0.9906 | 0.9981 | | 0.1822 | 4.0 | 800 | 0.0470 | 0.99 | 0.9900 | 0.99 | 0.9901 | 0.9875 | 0.9999 | | 0.0343 | 5.0 | 1000 | 0.1409 | 0.975 | 0.9751 | 0.975 | 0.9765 | 0.9691 | 0.9997 | | 0.1201 | 6.0 | 1200 | 0.1419 | 0.9675 | 0.9677 | 0.9675 | 0.9696 | 0.9598 | 0.9975 | | 0.102 | 7.0 | 1400 | 0.1631 | 0.9725 | 0.9727 | 0.9725 | 0.9746 | 0.9661 | 0.9967 | | 0.0105 | 8.0 | 1600 | 0.0528 | 0.9925 | 0.9925 | 0.9925 | 0.9927 | 0.9907 | 0.9987 | | 0.0039 | 9.0 | 1800 | 0.0708 | 0.9875 | 0.9875 | 0.9875 | 0.9880 | 0.9845 | 0.9984 | | 0.0058 | 10.0 | 2000 | 0.0526 | 0.9925 | 0.9925 | 0.9925 | 0.9927 | 0.9907 | 0.9994 | ### Framework versions - Transformers 4.41.0 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1