Model save
Browse files- README.md +80 -0
- model.safetensors +1 -1
README.md
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: microsoft/unispeech-sat-base
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
- f1
|
8 |
+
- recall
|
9 |
+
- precision
|
10 |
+
model-index:
|
11 |
+
- name: unispeech-sat-base-finetuned-common_voice
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# unispeech-sat-base-finetuned-common_voice
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [microsoft/unispeech-sat-base](https://huggingface.co/microsoft/unispeech-sat-base) on the None dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.0481
|
23 |
+
- Accuracy: 0.9925
|
24 |
+
- F1: 0.9925
|
25 |
+
- Recall: 0.9925
|
26 |
+
- Precision: 0.9928
|
27 |
+
- Mcc: 0.9907
|
28 |
+
- Auc: 0.9999
|
29 |
+
|
30 |
+
## Model description
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Intended uses & limitations
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training and evaluation data
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Training procedure
|
43 |
+
|
44 |
+
### Training hyperparameters
|
45 |
+
|
46 |
+
The following hyperparameters were used during training:
|
47 |
+
- learning_rate: 3e-05
|
48 |
+
- train_batch_size: 8
|
49 |
+
- eval_batch_size: 8
|
50 |
+
- seed: 42
|
51 |
+
- gradient_accumulation_steps: 4
|
52 |
+
- total_train_batch_size: 32
|
53 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
54 |
+
- lr_scheduler_type: linear
|
55 |
+
- lr_scheduler_warmup_ratio: 0.1
|
56 |
+
- num_epochs: 10
|
57 |
+
- mixed_precision_training: Native AMP
|
58 |
+
|
59 |
+
### Training results
|
60 |
+
|
61 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | Mcc | Auc |
|
62 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:|:------:|:------:|
|
63 |
+
| 1.5302 | 1.0 | 50 | 1.4495 | 0.56 | 0.5047 | 0.5600 | 0.6655 | 0.4723 | 0.8635 |
|
64 |
+
| 1.1592 | 2.0 | 100 | 0.9831 | 0.7125 | 0.6783 | 0.7125 | 0.7985 | 0.6723 | 0.9633 |
|
65 |
+
| 0.7313 | 3.0 | 150 | 0.5535 | 0.9425 | 0.9428 | 0.9425 | 0.9455 | 0.9287 | 0.9926 |
|
66 |
+
| 0.4431 | 4.0 | 200 | 0.2633 | 0.965 | 0.9651 | 0.9650 | 0.9676 | 0.9569 | 0.9976 |
|
67 |
+
| 0.2353 | 5.0 | 250 | 0.1310 | 0.985 | 0.9850 | 0.985 | 0.9856 | 0.9814 | 0.9998 |
|
68 |
+
| 0.1846 | 6.0 | 300 | 0.1136 | 0.9775 | 0.9775 | 0.9775 | 0.9783 | 0.9721 | 0.9978 |
|
69 |
+
| 0.1464 | 7.0 | 350 | 0.0714 | 0.9875 | 0.9875 | 0.9875 | 0.9878 | 0.9844 | 1.0000 |
|
70 |
+
| 0.1016 | 8.0 | 400 | 0.0592 | 0.99 | 0.9900 | 0.99 | 0.9902 | 0.9876 | 0.9999 |
|
71 |
+
| 0.057 | 9.0 | 450 | 0.0466 | 0.9925 | 0.9925 | 0.9925 | 0.9928 | 0.9907 | 0.9999 |
|
72 |
+
| 0.068 | 10.0 | 500 | 0.0481 | 0.9925 | 0.9925 | 0.9925 | 0.9928 | 0.9907 | 0.9999 |
|
73 |
+
|
74 |
+
|
75 |
+
### Framework versions
|
76 |
+
|
77 |
+
- Transformers 4.40.2
|
78 |
+
- Pytorch 2.2.1+cu121
|
79 |
+
- Datasets 2.19.1
|
80 |
+
- Tokenizers 0.19.1
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 378306500
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ad7d50c992cdf1fb6c6d832f30797dbf7bc078b0eb268527d2be5eec242b5bbd
|
3 |
size 378306500
|