--- license: apache-2.0 inference: false --- # MegaBeam-Mistral-7B-300k-AWQ Model MegaBeam-Mistral-7B-300k-AWQ is a version of the [MegaBeam-Mistral-7B-300k](https://huggingface.co/amazon/MegaBeam-Mistral-7B-300k) model that was quantized using the AWQ method developed by [Lin et al. (2023)](https://arxiv.org/abs/2306.00978). The MegaBeam-Mistral-7B-300k-AWQ models are approximately **70% smaller** than those of MegaBeam-Mistral-7B-300k whilst maintaining comparable performance. Please refer to the [original MegaBeam-Mistral-7B-300k model card](https://huggingface.co/amazon/MegaBeam-Mistral-7B-300k) for details about the model preparation and training processes. ## MegaBeam-Mistral-7B-300k Variants | Branch | Approx. Model Size | `q_group_size` | `w_bit` | `version` | |--------|---:|---------------:|--------:|-----------| | [main](https://huggingface.co/aws-prototyping/MegaBeam-Mistral-7B-300k-AWQ/tree/main) | 3.9 GB | 128 | 4 | GEMM | | [MegaBeam-Mistral-7B-300k-AWQ-64g-4b-GEMM](https://huggingface.co/aws-prototyping/MegaBeam-Mistral-7B-300k-AWQ/tree/MegaBeam-Mistral-7B-300k-AWQ-64g-4b-GEMM) | 4.0 GB | 64 | 4 | GEMM | | [MegaBeam-Mistral-7B-300k-AWQ-32g-4b-GEMM](https://huggingface.co/aws-prototyping/MegaBeam-Mistral-7B-300k-AWQ/tree/MegaBeam-Mistral-7B-300k-AWQ-32g-4b-GEMM) | 4.3 GB | 32 | 4 | GEMM | ## Dependencies - [`autoawq==0.2.5`](https://pypi.org/project/autoawq/0.2.5/) – [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) was used to quantize the MegaBeam-Mistral-7B-300k model. - [`vllm==0.4.2`](https://pypi.org/project/vllm/0.4.2/) – [vLLM](https://github.com/vllm-project/vllm) was used to host models for benchmarking. ## Evaluations ### InfiniteBench This benchmark was developed by [Zhang et al. (2024)](https://arxiv.org/abs/2402.13718), available from https://github.com/OpenBMB/InfiniteBench. See the [original MegaBeam-Mistral-7B-300k model card](https://huggingface.co/amazon/MegaBeam-Mistral-7B-300k) for more details. | Task Name | MegaBeam-Mistral-7B-300k-AWQ | MegaBeam-Mistral-7B-300k | Mistral-7B-Instruct-v0.2 | Llama-3-8B-Instruct-262k | Llama3-70B-1M | GPT-4-1106-preview | YaRN-Mistral-7B | Kimi-Chat | Claude 2 | Yi-6B-200K | Yi-34B-200K | Chatglm3-6B-128K | |------------------|------------------------------|--------------------------|--------------------------|--------------------------|---------------|--------------------|-----------------|-----------|----------|------------|-------------|------------------| | Retrieve.PassKey | 100% | 100% | 75.76% | 98.30% | 81.35% | 100% | 92.71% | 98.14% | 97.80% | 100.00% | 100.00% | 92.20% | | Retrieve.Number | 92.7% | 96.10% | 25.25% | 97.79% | 97.62% | 100% | 56.61% | 95.42% | 98.14% | 94.92% | 100.00% | 80.68% | | Retrieve.KV | 0% | 0% | 0% | 3.40% | 3% | 89.00% | < 5% | 53.60% | 65.40% | < 5% | < 5% | < 5% | | En.Sum | 29.05% | 29.39% | 22.13% | 16.40% | 20.72% | 14.73% | 9.09% | 17.93% | 14.45% | < 5% | < 5% | < 5% | | En.QA | 15.69% | 14.93% | 4.93% | 13.20% | 16.52% | 22.22% | 9.55% | 16.52% | 11.97% | 9.20% | 12.17% | < 5% | | En.MC | 48.91% | 51.52% | 7.80% | 50.65% | 62% | 67.25% | 27.95% | 72.49% | 62.88% | 36.68% | 38.43% | 10.48% | | En.Dia | 11.50% | 9.50% | 3.50% | 1% | 12.50% | 8.50% | 7.50% | 11.50% | 46.50% | < 5% | < 5% | < 5% | | Zh.QA | 10.53% | 10.71% | 3.43% | 19.02% | 26% | 25.96% | 14.43% | 17.93% | 9.64% | 15.07% | 13.61% | < 5% | | Code.Debug | 21.83% | 27.41% | 11.60% | 22.08% | 23.85% | 39.59% | < 5% | 18.02% | < 5% | < 5% | < 5% | < 5% | | Code.Run | 1.25% | 1.75% | 0.25% | 0% | 0% | 23.25% | < 5% | < 5% | < 5% | < 5% | < 5% | < 5% | | Math.Calc | 0% | 0% | 0% | 0% | 0% | < 5% | < 5% | < 5% | < 5% | < 5% | < 5% | < 5% | | Math.Find | 20.57% | 24.28% | 26.28% | 15.40% | 30% | 60.00% | 17.14% | 12.57% | 32.29% | < 5% | 25.71% | 7.71% | | **Average** | 29.34% | 30.70% | 15.08% | 28.10% | 31.13% | 46.08% | 20.41% | 34.93% | 37.21% | 22.78% | 25.41% | 17.59% | ### Long Context The following benchmark results are shown as _accuracy_ (%) values, unless stated otherwise. #### Topic Retrieval See https://lmsys.org/blog/2023-06-29-longchat/ | Model Name | n_topics=05 | n_topics=10 | n_topics=15 | n_topics=20 | n_topics=25 | |:---------------------------------------------------|--------------:|--------------:|--------------:|--------------:|--------------:| | _n_tokens_ (approx.) = | _3048_ | _5966_ | _8903_ | _11832_ | _14757_ | | MegaBeam-Mistral-7B-300k | 100 | 100 | 100 | 100 | 100 | | **MegaBeam-Mistral-7B-300k-AWQ** | **100** | **100** | **100**| **100** | **100** | | **MegaBeam-Mistral-7B-300k-AWQ-64g-4b-GEMM** | **100** | **100** | **100**| **100** | **98** | | **MegaBeam-Mistral-7B-300k-AWQ-32g-4b-GEMM** | **100** | **100** | **100**| **100** | **98** | #### [Line Retrieval](https://lmsys.org/blog/2023-06-29-longchat/#longeval-results) See https://lmsys.org/blog/2023-06-29-longchat/#longeval-results | Model Name | n_lines=200 | n_lines=300 | n_lines=400 | n_lines=500 | n_lines=600 | n_lines=680 | |:----------|-------------:|-------------:|------------:|-----------:|-----------:|-----------:| | _n_tokens_ (approx.) = | _4317_ | _6415_ | _8510_ | _10610_ | _12698_ | _14373_ | | MegaBeam-Mistral-7B-300k | 98 | 98 | 92 | 98 | 90 | 90 | | **MegaBeam-Mistral-7B-300k-AWQ** | **96**| **94**| **88** | **80** | **70**| **62** | | **MegaBeam-Mistral-7B-300k-AWQ-64g-4b-GEMM** | **100**| **98**| **96** | **96** | **90**| **94** | | **MegaBeam-Mistral-7B-300k-AWQ-32g-4b-GEMM** | **98**| **98**| **82** | **96** | **92**| **90** | #### Pass Key Retrieval See https://github.com/epfml/landmark-attention/blob/main/llama/run_test.py#L101 | Model Name | n_garbage=12000 | n_garbage=20000 | n_garbage=31000 | n_garbage=38000 | n_garbage=45000 | n_garbage=60000 | |:----------|-------------:|-------------:|------------:|-----------:|-----------:|-----------:| | _n_tokens_ (approx.) = | _3272_ | _5405_ | _8338_ | _10205_ | _12071_ | _16072_ | | MegaBeam-Mistral-7B-300k | 100 | 100 | 100 | 100 | 100 | 100| | **MegaBeam-Mistral-7B-300k-AWQ** | **100** | **100**| **100**| **100** | **100**| **100**| | **MegaBeam-Mistral-7B-300k-AWQ-64g-4b-GEMM** | **100** | **100**| **100**| **100** | **100**| **100**| | **MegaBeam-Mistral-7B-300k-AWQ-32g-4b-GEMM** | **100** | **100**| **100**| **100** | **100**| **100**| #### QuALITY (Question Answering with Long Input Texts, Yes!) See https://nyu-mll.github.io/quality/ |Model Name| Test set Accuracy | Hard subset Accuracy| |:----------|-------------:|-------------:| | MegaBeam-Mistral-7B-300k | 53.2 | 72 | | **MegaBeam-Mistral-7B-300k-AWQ** | **51.3** | **71.3** | | **MegaBeam-Mistral-7B-300k-AWQ-64g-4b-GEMM** | **52.4** | **72.1** | | **MegaBeam-Mistral-7B-300k-AWQ-32g-4b-GEMM** | **53.1** | **71.3** | ## Usage ## Inference via vLLM HTTP Host ### Launch Host ```bash python -m vllm.entrypoints.openai.api_server \ --model aws-prototyping/MegaBeam-Mistral-7B-300k-AWQ \ --quantization awq ``` ### Query Host ```bash curl -X POST http://localhost:8000/v1/completions \ -H "Content-Type: application/json" \ -d '{ "model": "aws-prototyping/MegaBeam-Mistral-7B-300k-AWQ", "prompt": "<|prompter|>What are the main challenges to support a long context for LLM?<|assistant|>", "temperature": 0, "echo": false }' ``` ## Inference via [vLLM Offline Inference](https://docs.vllm.ai/en/latest/getting_started/examples/offline_inference.html) ```python from vllm import LLM, SamplingParams prompts = [ "<|prompter|>What are the main challenges to support a long context for LLM?<|assistant|>", ] sampling_params = SamplingParams(temperature=0, max_tokens=100) llm = LLM(model="aws-prototyping/MegaBeam-Mistral-7B-300k-AWQ") outputs = llm.generate(prompts, sampling_params) # Print the outputs. for output in outputs: prompt = output.prompt generated_text = output.outputs[0].text print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") ``` ## License Apache 2.0 ## Limitations Before using the MegaBeam-Mistral-7B-300k-AWQ model, it is important to perform your own independent assessment, and take measures to ensure that your use would comply with your own specific quality control practices and standards, and that your use would comply with the local rules, laws, regulations, licenses and terms that apply to you, and your content.