aws-prototyping
commited on
Commit
•
7eba212
1
Parent(s):
93963dd
Initial commit of the model files.
Browse files- .gitattributes +1 -0
- README.md +159 -3
- config.json +34 -0
- generation_config.json +7 -0
- model.safetensors +3 -0
- special_tokens_map.json +23 -0
- tokenizer.json +0 -0
- tokenizer_config.json +43 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
model.safetensors filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,3 +1,159 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
inference: false
|
4 |
+
---
|
5 |
+
|
6 |
+
# MegaBeam-Mistral-7B-300k-AWQ Model
|
7 |
+
|
8 |
+
MegaBeam-Mistral-7B-300k-AWQ is a version of the [MegaBeam-Mistral-7B-300k](https://huggingface.co/amazon/MegaBeam-Mistral-7B-300k) model that was
|
9 |
+
quantized using the AWQ method developed by [Lin et al. (2023)](https://arxiv.org/abs/2306.00978).
|
10 |
+
The MegaBeam-Mistral-7B-300k-AWQ models are approximately **70% smaller** than those of MegaBeam-Mistral-7B-300k whilst maintaining comparable performance.
|
11 |
+
|
12 |
+
Please refer to the [original MegaBeam-Mistral-7B-300k model card](https://huggingface.co/amazon/MegaBeam-Mistral-7B-300k) for details about the model
|
13 |
+
preparation and training processes.
|
14 |
+
|
15 |
+
## MegaBeam-Mistral-7B-300k Variants
|
16 |
+
|
17 |
+
| Branch | Approx. Model Size | `q_group_size` | `w_bit` | `version` |
|
18 |
+
|--------|---:|---------------:|--------:|-----------|
|
19 |
+
| [main](https://huggingface.co/aws-prototyping/MegaBeam-Mistral-7B-300k-AWQ/tree/main) | 3.9 GB | 128 | 4 | GEMM |
|
20 |
+
| [MegaBeam-Mistral-7B-300k-AWQ-64g-4b-GEMM](https://huggingface.co/aws-prototyping/MegaBeam-Mistral-7B-300k-AWQ/tree/MegaBeam-Mistral-7B-300k-AWQ-64g-4b-GEMM) | 4.0 GB | 64 | 4 | GEMM |
|
21 |
+
| [MegaBeam-Mistral-7B-300k-AWQ-32g-4b-GEMM](https://huggingface.co/aws-prototyping/MegaBeam-Mistral-7B-300k-AWQ/tree/MegaBeam-Mistral-7B-300k-AWQ-32g-4b-GEMM) | 4.3 GB | 32 | 4 | GEMM |
|
22 |
+
|
23 |
+
## Dependencies
|
24 |
+
- [`autoawq==0.2.5`](https://pypi.org/project/autoawq/0.2.5/) – [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) was used to quantize the MegaBeam-Mistral-7B-300k model.
|
25 |
+
- [`vllm==0.4.2`](https://pypi.org/project/vllm/0.4.2/) – [vLLM](https://github.com/vllm-project/vllm) was used to host models for benchmarking.
|
26 |
+
|
27 |
+
## Evaluations
|
28 |
+
|
29 |
+
### InfiniteBench
|
30 |
+
|
31 |
+
This benchmark was developed by [Zhang et al. (2024)](https://arxiv.org/abs/2402.13718), available from https://github.com/OpenBMB/InfiniteBench.
|
32 |
+
|
33 |
+
See the [original MegaBeam-Mistral-7B-300k model card](https://huggingface.co/amazon/MegaBeam-Mistral-7B-300k)
|
34 |
+
for more details.
|
35 |
+
|
36 |
+
| Task Name | MegaBeam-Mistral-7B-300k-AWQ | MegaBeam-Mistral-7B-300k | Mistral-7B-Instruct-v0.2 | Llama-3-8B-Instruct-262k | Llama3-70B-1M | GPT-4-1106-preview | YaRN-Mistral-7B | Kimi-Chat | Claude 2 | Yi-6B-200K | Yi-34B-200K | Chatglm3-6B-128K |
|
37 |
+
|------------------|------------------------------|--------------------------|--------------------------|--------------------------|---------------|--------------------|-----------------|-----------|----------|------------|-------------|------------------|
|
38 |
+
| Retrieve.PassKey | 100% | 100% | 75.76% | 98.30% | 81.35% | 100% | 92.71% | 98.14% | 97.80% | 100.00% | 100.00% | 92.20% |
|
39 |
+
| Retrieve.Number | 92.7% | 96.10% | 25.25% | 97.79% | 97.62% | 100% | 56.61% | 95.42% | 98.14% | 94.92% | 100.00% | 80.68% |
|
40 |
+
| Retrieve.KV | 0% | 0% | 0% | 3.40% | 3% | 89.00% | < 5% | 53.60% | 65.40% | < 5% | < 5% | < 5% |
|
41 |
+
| En.Sum | 29.05% | 29.39% | 22.13% | 16.40% | 20.72% | 14.73% | 9.09% | 17.93% | 14.45% | < 5% | < 5% | < 5% |
|
42 |
+
| En.QA | 15.69% | 14.93% | 4.93% | 13.20% | 16.52% | 22.22% | 9.55% | 16.52% | 11.97% | 9.20% | 12.17% | < 5% |
|
43 |
+
| En.MC | 48.91% | 51.52% | 7.80% | 50.65% | 62% | 67.25% | 27.95% | 72.49% | 62.88% | 36.68% | 38.43% | 10.48% |
|
44 |
+
| En.Dia | 11.50% | 9.50% | 3.50% | 1% | 12.50% | 8.50% | 7.50% | 11.50% | 46.50% | < 5% | < 5% | < 5% |
|
45 |
+
| Zh.QA | 10.53% | 10.71% | 3.43% | 19.02% | 26% | 25.96% | 14.43% | 17.93% | 9.64% | 15.07% | 13.61% | < 5% |
|
46 |
+
| Code.Debug | 21.83% | 27.41% | 11.60% | 22.08% | 23.85% | 39.59% | < 5% | 18.02% | < 5% | < 5% | < 5% | < 5% |
|
47 |
+
| Code.Run | 1.25% | 1.75% | 0.25% | 0% | 0% | 23.25% | < 5% | < 5% | < 5% | < 5% | < 5% | < 5% |
|
48 |
+
| Math.Calc | 0% | 0% | 0% | 0% | 0% | < 5% | < 5% | < 5% | < 5% | < 5% | < 5% | < 5% |
|
49 |
+
| Math.Find | 20.57% | 24.28% | 26.28% | 15.40% | 30% | 60.00% | 17.14% | 12.57% | 32.29% | < 5% | 25.71% | 7.71% |
|
50 |
+
| **Average** | 29.34% | 30.70% | 15.08% | 28.10% | 31.13% | 46.08% | 20.41% | 34.93% | 37.21% | 22.78% | 25.41% | 17.59% |
|
51 |
+
|
52 |
+
|
53 |
+
### Long Context
|
54 |
+
|
55 |
+
The following benchmark results are shown as _accuracy_ (%) values, unless stated otherwise.
|
56 |
+
|
57 |
+
#### Topic Retrieval
|
58 |
+
|
59 |
+
See https://lmsys.org/blog/2023-06-29-longchat/
|
60 |
+
|
61 |
+
| Model Name | n_topics=05 | n_topics=10 | n_topics=15 | n_topics=20 | n_topics=25 |
|
62 |
+
|:---------------------------------------------------|--------------:|--------------:|--------------:|--------------:|--------------:|
|
63 |
+
| _n_tokens_ (approx.) = | _3048_ | _5966_ | _8903_ | _11832_ | _14757_ |
|
64 |
+
| MegaBeam-Mistral-7B-300k | 100 | 100 | 100 | 100 | 100 |
|
65 |
+
| **MegaBeam-Mistral-7B-300k-AWQ** | **100** | **100** | **100**| **100** | **100** |
|
66 |
+
| **MegaBeam-Mistral-7B-300k-AWQ-64g-4b-GEMM** | **100** | **100** | **100**| **100** | **98** |
|
67 |
+
| **MegaBeam-Mistral-7B-300k-AWQ-32g-4b-GEMM** | **100** | **100** | **100**| **100** | **98** |
|
68 |
+
|
69 |
+
#### [Line Retrieval](https://lmsys.org/blog/2023-06-29-longchat/#longeval-results)
|
70 |
+
|
71 |
+
See https://lmsys.org/blog/2023-06-29-longchat/#longeval-results
|
72 |
+
|
73 |
+
| Model Name | n_lines=200 | n_lines=300 | n_lines=400 | n_lines=500 | n_lines=600 | n_lines=680 |
|
74 |
+
|:----------|-------------:|-------------:|------------:|-----------:|-----------:|-----------:|
|
75 |
+
| _n_tokens_ (approx.) = | _4317_ | _6415_ | _8510_ | _10610_ | _12698_ | _14373_ |
|
76 |
+
| MegaBeam-Mistral-7B-300k | 98 | 98 | 92 | 98 | 90 | 90 |
|
77 |
+
| **MegaBeam-Mistral-7B-300k-AWQ** | **96**| **94**| **88** | **80** | **70**| **62** |
|
78 |
+
| **MegaBeam-Mistral-7B-300k-AWQ-64g-4b-GEMM** | **100**| **98**| **96** | **96** | **90**| **94** |
|
79 |
+
| **MegaBeam-Mistral-7B-300k-AWQ-32g-4b-GEMM** | **98**| **98**| **82** | **96** | **92**| **90** |
|
80 |
+
|
81 |
+
#### Pass Key Retrieval
|
82 |
+
|
83 |
+
See https://github.com/epfml/landmark-attention/blob/main/llama/run_test.py#L101
|
84 |
+
|
85 |
+
| Model Name | n_garbage=12000 | n_garbage=20000 | n_garbage=31000 | n_garbage=38000 | n_garbage=45000 | n_garbage=60000 |
|
86 |
+
|:----------|-------------:|-------------:|------------:|-----------:|-----------:|-----------:|
|
87 |
+
| _n_tokens_ (approx.) = | _3272_ | _5405_ | _8338_ | _10205_ | _12071_ | _16072_ |
|
88 |
+
| MegaBeam-Mistral-7B-300k | 100 | 100 | 100 | 100 | 100 | 100|
|
89 |
+
| **MegaBeam-Mistral-7B-300k-AWQ** | **100** | **100**| **100**| **100** | **100**| **100**|
|
90 |
+
| **MegaBeam-Mistral-7B-300k-AWQ-64g-4b-GEMM** | **100** | **100**| **100**| **100** | **100**| **100**|
|
91 |
+
| **MegaBeam-Mistral-7B-300k-AWQ-32g-4b-GEMM** | **100** | **100**| **100**| **100** | **100**| **100**|
|
92 |
+
|
93 |
+
|
94 |
+
#### QuALITY (Question Answering with Long Input Texts, Yes!)
|
95 |
+
|
96 |
+
See https://nyu-mll.github.io/quality/
|
97 |
+
|
98 |
+
|Model Name| Test set Accuracy | Hard subset Accuracy|
|
99 |
+
|:----------|-------------:|-------------:|
|
100 |
+
| MegaBeam-Mistral-7B-300k | 53.2 | 72 |
|
101 |
+
| **MegaBeam-Mistral-7B-300k-AWQ** | **51.3** | **71.3** |
|
102 |
+
| **MegaBeam-Mistral-7B-300k-AWQ-64g-4b-GEMM** | **52.4** | **72.1** |
|
103 |
+
| **MegaBeam-Mistral-7B-300k-AWQ-32g-4b-GEMM** | **53.1** | **71.3** |
|
104 |
+
|
105 |
+
## Usage
|
106 |
+
|
107 |
+
## Inference via vLLM HTTP Host
|
108 |
+
|
109 |
+
### Launch Host
|
110 |
+
```bash
|
111 |
+
python -m vllm.entrypoints.openai.api_server \
|
112 |
+
--model aws-prototyping/MegaBeam-Mistral-7B-300k-AWQ \
|
113 |
+
--quantization awq
|
114 |
+
```
|
115 |
+
|
116 |
+
### Query Host
|
117 |
+
```bash
|
118 |
+
curl -X POST http://localhost:8000/v1/completions \
|
119 |
+
-H "Content-Type: application/json" \
|
120 |
+
-d '{ "model": "aws-prototyping/MegaBeam-Mistral-7B-300k-AWQ",
|
121 |
+
"prompt": "<|prompter|>What are the main challenges to support a long context for LLM?</s><|assistant|>",
|
122 |
+
"temperature": 0,
|
123 |
+
"echo": false
|
124 |
+
}'
|
125 |
+
```
|
126 |
+
|
127 |
+
## Inference via [vLLM Offline Inference](https://docs.vllm.ai/en/latest/getting_started/examples/offline_inference.html)
|
128 |
+
```python
|
129 |
+
from vllm import LLM, SamplingParams
|
130 |
+
|
131 |
+
prompts = [
|
132 |
+
"<|prompter|>What are the main challenges to support a long context for LLM?</s><|assistant|>",
|
133 |
+
]
|
134 |
+
sampling_params = SamplingParams(temperature=0, max_tokens=100)
|
135 |
+
|
136 |
+
llm = LLM(model="aws-prototyping/MegaBeam-Mistral-7B-300k-AWQ")
|
137 |
+
|
138 |
+
outputs = llm.generate(prompts, sampling_params)
|
139 |
+
|
140 |
+
# Print the outputs.
|
141 |
+
for output in outputs:
|
142 |
+
prompt = output.prompt
|
143 |
+
generated_text = output.outputs[0].text
|
144 |
+
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
145 |
+
|
146 |
+
```
|
147 |
+
|
148 |
+
## License
|
149 |
+
|
150 |
+
Apache 2.0
|
151 |
+
|
152 |
+
## Limitations
|
153 |
+
|
154 |
+
Before using the MegaBeam-Mistral-7B-300k-AWQ model, it is important to perform your own
|
155 |
+
independent assessment, and take measures to ensure that your use would comply
|
156 |
+
with your own specific quality control practices and standards, and that your
|
157 |
+
use would comply with the local rules, laws, regulations, licenses and terms
|
158 |
+
that apply to you, and your content.
|
159 |
+
|
config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "aws-prototyping/MegaBeam-Mistral-7B-300k-AWQ",
|
3 |
+
"architectures": [
|
4 |
+
"MistralForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 1,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 4096,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 14336,
|
13 |
+
"max_position_embeddings": 288800,
|
14 |
+
"model_type": "mistral",
|
15 |
+
"num_attention_heads": 32,
|
16 |
+
"num_hidden_layers": 32,
|
17 |
+
"num_key_value_heads": 8,
|
18 |
+
"quantization_config": {
|
19 |
+
"bits": 4,
|
20 |
+
"group_size": 128,
|
21 |
+
"modules_to_not_convert": null,
|
22 |
+
"quant_method": "awq",
|
23 |
+
"version": "gemm",
|
24 |
+
"zero_point": true
|
25 |
+
},
|
26 |
+
"rms_norm_eps": 1e-05,
|
27 |
+
"rope_theta": 25000000.0,
|
28 |
+
"sliding_window": null,
|
29 |
+
"tie_word_embeddings": false,
|
30 |
+
"torch_dtype": "float16",
|
31 |
+
"transformers_version": "4.41.2",
|
32 |
+
"use_cache": true,
|
33 |
+
"vocab_size": 32000
|
34 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"do_sample": true,
|
5 |
+
"eos_token_id": 2,
|
6 |
+
"transformers_version": "4.41.2"
|
7 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a2b626ba3dcb50bea165b4925f9bb7e3e4b7c2ef8a0deb17ed2e04790fd36f9f
|
3 |
+
size 4150880232
|
special_tokens_map.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"unk_token": {
|
17 |
+
"content": "<unk>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
}
|
23 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"0": {
|
6 |
+
"content": "<unk>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"1": {
|
14 |
+
"content": "<s>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"2": {
|
22 |
+
"content": "</s>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
}
|
29 |
+
},
|
30 |
+
"additional_special_tokens": [],
|
31 |
+
"bos_token": "<s>",
|
32 |
+
"chat_template": "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token}}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}",
|
33 |
+
"clean_up_tokenization_spaces": false,
|
34 |
+
"eos_token": "</s>",
|
35 |
+
"legacy": true,
|
36 |
+
"model_max_length": 1000000000000000019884624838656,
|
37 |
+
"pad_token": null,
|
38 |
+
"sp_model_kwargs": {},
|
39 |
+
"spaces_between_special_tokens": false,
|
40 |
+
"tokenizer_class": "LlamaTokenizer",
|
41 |
+
"unk_token": "<unk>",
|
42 |
+
"use_default_system_prompt": false
|
43 |
+
}
|