End of training
Browse files
README.md
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: openai/whisper-medium
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
model-index:
|
7 |
+
- name: MAScIR_elderly_whisper-medium-LoRA-ev
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# MAScIR_elderly_whisper-medium-LoRA-ev
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the None dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 0.0213
|
19 |
+
|
20 |
+
## Model description
|
21 |
+
|
22 |
+
More information needed
|
23 |
+
|
24 |
+
## Intended uses & limitations
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Training and evaluation data
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training procedure
|
33 |
+
|
34 |
+
### Training hyperparameters
|
35 |
+
|
36 |
+
The following hyperparameters were used during training:
|
37 |
+
- learning_rate: 0.001
|
38 |
+
- train_batch_size: 8
|
39 |
+
- eval_batch_size: 8
|
40 |
+
- seed: 42
|
41 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
42 |
+
- lr_scheduler_type: linear
|
43 |
+
- lr_scheduler_warmup_steps: 200
|
44 |
+
- num_epochs: 3
|
45 |
+
|
46 |
+
### Training results
|
47 |
+
|
48 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
49 |
+
|:-------------:|:-----:|:----:|:---------------:|
|
50 |
+
| 0.3194 | 0.19 | 100 | 0.2974 |
|
51 |
+
| 0.2485 | 0.37 | 200 | 0.2865 |
|
52 |
+
| 0.2532 | 0.56 | 300 | 0.2810 |
|
53 |
+
| 0.2306 | 0.74 | 400 | 0.2225 |
|
54 |
+
| 0.1954 | 0.93 | 500 | 0.2355 |
|
55 |
+
| 0.1178 | 1.11 | 600 | 0.1883 |
|
56 |
+
| 0.1087 | 1.3 | 700 | 0.1567 |
|
57 |
+
| 0.098 | 1.48 | 800 | 0.1593 |
|
58 |
+
| 0.0661 | 1.67 | 900 | 0.0985 |
|
59 |
+
| 0.0675 | 1.85 | 1000 | 0.0602 |
|
60 |
+
| 0.0297 | 2.04 | 1100 | 0.0543 |
|
61 |
+
| 0.0172 | 2.22 | 1200 | 0.0436 |
|
62 |
+
| 0.0157 | 2.41 | 1300 | 0.0403 |
|
63 |
+
| 0.0143 | 2.59 | 1400 | 0.0317 |
|
64 |
+
| 0.0167 | 2.78 | 1500 | 0.0265 |
|
65 |
+
| 0.0095 | 2.96 | 1600 | 0.0213 |
|
66 |
+
|
67 |
+
|
68 |
+
### Framework versions
|
69 |
+
|
70 |
+
- Transformers 4.33.0.dev0
|
71 |
+
- Pytorch 2.0.1+cu118
|
72 |
+
- Datasets 2.14.4
|
73 |
+
- Tokenizers 0.13.3
|