--- base_model: SALT-NLP/FLANG-BERT tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: FLANG-BERT_roberta-base results: [] --- # FLANG-BERT_roberta-base This model is a fine-tuned version of [SALT-NLP/FLANG-BERT](https://huggingface.co/SALT-NLP/FLANG-BERT) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5101 - Accuracy: 0.8643 - F1: 0.8637 - Precision: 0.8638 - Recall: 0.8643 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.841 | 1.0 | 91 | 0.7542 | 0.6895 | 0.6505 | 0.7281 | 0.6895 | | 0.4766 | 2.0 | 182 | 0.4469 | 0.8159 | 0.8161 | 0.8201 | 0.8159 | | 0.3539 | 3.0 | 273 | 0.3916 | 0.8456 | 0.8459 | 0.8473 | 0.8456 | | 0.2452 | 4.0 | 364 | 0.4667 | 0.8362 | 0.8348 | 0.8369 | 0.8362 | | 0.1646 | 5.0 | 455 | 0.4408 | 0.8643 | 0.8636 | 0.8643 | 0.8643 | | 0.1273 | 6.0 | 546 | 0.5101 | 0.8643 | 0.8637 | 0.8638 | 0.8643 | | 0.1052 | 7.0 | 637 | 0.7249 | 0.8393 | 0.8369 | 0.8413 | 0.8393 | | 0.0889 | 8.0 | 728 | 0.5791 | 0.8424 | 0.8413 | 0.8419 | 0.8424 | | 0.0846 | 9.0 | 819 | 0.5522 | 0.8580 | 0.8576 | 0.8577 | 0.8580 | | 0.0764 | 10.0 | 910 | 0.7277 | 0.8549 | 0.8549 | 0.8555 | 0.8549 | | 0.1531 | 11.0 | 1001 | 0.6068 | 0.8424 | 0.8407 | 0.8441 | 0.8424 | ### Framework versions - Transformers 4.37.0 - Pytorch 2.1.2 - Datasets 2.1.0 - Tokenizers 0.15.1