frankenjoe
commited on
Commit
•
5cb94f8
1
Parent(s):
e51b6f2
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: en
|
3 |
+
datasets:
|
4 |
+
- agender
|
5 |
+
- mozillacommonvoice
|
6 |
+
- timit
|
7 |
+
- voxceleb2
|
8 |
+
inference: true
|
9 |
+
tags:
|
10 |
+
- speech
|
11 |
+
- audio
|
12 |
+
- wav2vec2
|
13 |
+
- audio-classification
|
14 |
+
- age-recognition
|
15 |
+
- gender-recognition
|
16 |
+
license: cc-by-nc-sa-4.0
|
17 |
+
---
|
18 |
+
|
19 |
+
# Model for Age and Gender Recognition based on Wav2vec 2.0 (24 layers)
|
20 |
+
|
21 |
+
The model expects a raw audio signal as input and outputs predictions
|
22 |
+
for age in a range of approximately 0...1 (0...100 years)
|
23 |
+
and gender expressing the probababilty for being child, female, or male.
|
24 |
+
In addition, it also provides the pooled states of the last transformer layer.
|
25 |
+
The model was created by fine-tuning [
|
26 |
+
Wav2Vec2-Large-Robust](https://huggingface.co/facebook/wav2vec2-large-robust)
|
27 |
+
on [aGender](https://paperswithcode.com/dataset/agender),
|
28 |
+
[Mozilla Common Voice](https://commonvoice.mozilla.org/),
|
29 |
+
[Timit](https://catalog.ldc.upenn.edu/LDC93s1) and
|
30 |
+
[Voxceleb 2](https://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox2.html).
|
31 |
+
For this version of the model we trained all 24 transformer layers.
|
32 |
+
An [ONNX](https://onnx.ai/") export of the model is available from
|
33 |
+
[doi:10.5281/zenodo.7761387](https://doi.org/10.5281/zenodo.7761387).
|
34 |
+
Further details are given in the associated [paper](https://arxiv.org/abs/2306.16962)
|
35 |
+
and [tutorial](https://github.com/audeering/w2v2-age-gender-how-to).
|
36 |
+
|
37 |
+
# Usage
|
38 |
+
|
39 |
+
```python
|
40 |
+
import numpy as np
|
41 |
+
import torch
|
42 |
+
import torch.nn as nn
|
43 |
+
from transformers import Wav2Vec2Processor
|
44 |
+
from transformers.models.wav2vec2.modeling_wav2vec2 import (
|
45 |
+
Wav2Vec2Model,
|
46 |
+
Wav2Vec2PreTrainedModel,
|
47 |
+
)
|
48 |
+
|
49 |
+
|
50 |
+
class ModelHead(nn.Module):
|
51 |
+
r"""Classification head."""
|
52 |
+
|
53 |
+
def __init__(self, config, num_labels):
|
54 |
+
|
55 |
+
super().__init__()
|
56 |
+
|
57 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
58 |
+
self.dropout = nn.Dropout(config.final_dropout)
|
59 |
+
self.out_proj = nn.Linear(config.hidden_size, num_labels)
|
60 |
+
|
61 |
+
def forward(self, features, **kwargs):
|
62 |
+
|
63 |
+
x = features
|
64 |
+
x = self.dropout(x)
|
65 |
+
x = self.dense(x)
|
66 |
+
x = torch.tanh(x)
|
67 |
+
x = self.dropout(x)
|
68 |
+
x = self.out_proj(x)
|
69 |
+
|
70 |
+
return x
|
71 |
+
|
72 |
+
|
73 |
+
class AgeGenderModel(Wav2Vec2PreTrainedModel):
|
74 |
+
r"""Speech emotion classifier."""
|
75 |
+
|
76 |
+
def __init__(self, config):
|
77 |
+
|
78 |
+
super().__init__(config)
|
79 |
+
|
80 |
+
self.config = config
|
81 |
+
self.wav2vec2 = Wav2Vec2Model(config)
|
82 |
+
self.age = ModelHead(config, 1)
|
83 |
+
self.gender = ModelHead(config, 3)
|
84 |
+
self.init_weights()
|
85 |
+
|
86 |
+
def forward(
|
87 |
+
self,
|
88 |
+
input_values,
|
89 |
+
):
|
90 |
+
|
91 |
+
outputs = self.wav2vec2(input_values)
|
92 |
+
hidden_states = outputs[0]
|
93 |
+
hidden_states = torch.mean(hidden_states, dim=1)
|
94 |
+
logits_age = self.age(hidden_states)
|
95 |
+
logits_gender = self.gender(hidden_states)
|
96 |
+
|
97 |
+
return hidden_states, logits_age, logits_gender
|
98 |
+
|
99 |
+
|
100 |
+
|
101 |
+
# load model from hub
|
102 |
+
device = 'cpu'
|
103 |
+
model_name = 'audeering/wav2vec2-large-robust-24-ft-age-gender'
|
104 |
+
processor = Wav2Vec2Processor.from_pretrained(model_name)
|
105 |
+
model = AgeGenderModel.from_pretrained(model_name)
|
106 |
+
|
107 |
+
# dummy signal
|
108 |
+
sampling_rate = 16000
|
109 |
+
signal = np.zeros((1, sampling_rate), dtype=np.float32)
|
110 |
+
|
111 |
+
|
112 |
+
def process_func(
|
113 |
+
x: np.ndarray,
|
114 |
+
sampling_rate: int,
|
115 |
+
embeddings: bool = False,
|
116 |
+
) -> np.ndarray:
|
117 |
+
r"""Predict age and gender or extract embeddings from raw audio signal."""
|
118 |
+
|
119 |
+
# run through processor to normalize signal
|
120 |
+
# always returns a batch, so we just get the first entry
|
121 |
+
# then we put it on the device
|
122 |
+
y = processor(x, sampling_rate=sampling_rate)
|
123 |
+
y = y['input_values'][0]
|
124 |
+
y = y.reshape(1, -1)
|
125 |
+
y = torch.from_numpy(y).to(device)
|
126 |
+
|
127 |
+
# run through model
|
128 |
+
with torch.no_grad():
|
129 |
+
y = model(y)
|
130 |
+
if embeddings:
|
131 |
+
y = y[0]
|
132 |
+
else:
|
133 |
+
y = torch.hstack([y[1], y[2]])
|
134 |
+
|
135 |
+
# convert to numpy
|
136 |
+
y = y.detach().cpu().numpy()
|
137 |
+
|
138 |
+
return y
|
139 |
+
|
140 |
+
|
141 |
+
print(process_func(signal, sampling_rate))
|
142 |
+
# Age child female male
|
143 |
+
# [[ 0.3079211 -1.6096017 -2.1094327 3.1461434]]
|
144 |
+
|
145 |
+
print(process_func(signal, sampling_rate, embeddings=True))
|
146 |
+
# Pooled hidden states of last transformer layer
|
147 |
+
# [[-0.00752167 0.0065819 -0.00746342 ... 0.00663632 0.00848748
|
148 |
+
# 0.00599211]]
|
149 |
+
```
|