asuzuki commited on
Commit
15477d2
1 Parent(s): 43a4bcd

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.74 +/- 0.27
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:244000c40df3398ea2e69b44a84d7d5034c9a0338889a4b56a74e98da69e9aaa
3
+ size 113210
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7efb55434670>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7efb55417f00>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
15
+ "log_std_init": -2,
16
+ "ortho_init": false,
17
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
18
+ "optimizer_kwargs": {
19
+ "alpha": 0.99,
20
+ "eps": 1e-05,
21
+ "weight_decay": 0
22
+ }
23
+ },
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
26
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
27
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
28
+ "_shape": null,
29
+ "dtype": null,
30
+ "_np_random": null
31
+ },
32
+ "action_space": {
33
+ ":type:": "<class 'gym.spaces.box.Box'>",
34
+ ":serialized:": "gAWV9QsAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEl9fcmFuZG9tc3RhdGVfY3RvcpSTlIwHTVQxOTkzN5SFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylGgwjAVzdGF0ZZR9lCiMA2tleZRoEiiWwAkAAAAAAAAAAACAfSstTDVk1PaYhkOpv5znPMMetBi8apu4yv+8O9IpLSXVK+LNuumJNM0Ozyqh1B15PkRWFSW2qD/jnsTUdAu/tK7wIhelF9YdH+RHo9LU12o7D7xvgJ5jXXWeCb1YNanwo4TaG05fJvGIXffoXhDy1+SkocwCY3zDqPchT3mR0XXblbAFPd/+iOJTel3L+GlSfzi7Z1nWKIlSJ+wevtUHcTOHpHXpysG+A3Vuzznf1HWJczU4nF5h4wV+/59DOwPtpemjnIMuQHf9cI9or0mKfKKbijcf35AC6W9lFT+v/ub2LmU9RaQKTt6yyZMuaZmWTg/Ohz3P3hBcardeKsCqvjMKXZdsPgsfXfsyC0ERO8hoRQXVKfBvBX7mPoZTSFBax8tYjrrWDVUAu+nJ7RKMYE2m3xFtODSWj7TG3fVL9qCTxqtm9cGtPWNbScS3TQyZXmEFsV3vIBqmhB8Pz70e2NqCOCZZGowVz8nqjehM3oEt47Zun/A5si83pQK4Sn0bNyI6GQtFpblzeg4Y68tPULf5hPpZyUXgaUBvMn7qgi5r1DqTtNgFzCJ8jXd+aO7T2RS++GLlK3UeucvI/8F31thAd33dgOmDgy7AtQYidSgd+D9zGZzv0WSKZc9SuzH6zjp3k41v3gtg/78eWACezisqBSaNtous6H5Z3uP19fNWCWkPoWKuJWGinZ69yiCitrUCDLpSMM3VR0rfMP04VMY2Jeu8F1UH1TIJ9eY9d1RV6/+Z22oDZZMhotQ7sjgc1NpCoSLR4d76yf7e8a0R57YPbza3zyOOEHXeZ8cXc2hmRz7M0QS8P3f4WPBVi6Bj4yEydNRDHHhrztETDqBt9Iws6THSx+5SsZL7bfE+x3X2GtENgUDcreOBeh7UgAqifEIeSZfK0G3ir1gRMae1HX3a1jbjijVLNjGy465/WGWardhVbudKkhEzcgEhxcf9JmPqCp83+e4SMcEg5DuXkwE+po7/r2LgajH+StyZmoTUc0qfPSUu1CjdtUpX1AWrH5p8EAJNJ5apRD5cQ9yXhQuzjrRJnHGSDrBdWFwyKQQH2BUiRFYhLCH7mmNhj738YTIacjZRRDRy9rlwoCWX2dHoEJhTtmuHLZmZSN/lttH5gmIiSFzx7ljii72lAJWFSqME/tPeBLUy+m6axmd9b4RZvki2kGwosymIb06FkBDX4gLO8DuGWOKmyWZytm4TTHAViVoWCCgM+4+SKE1kD/rR5QDXLk7YHzCNqp2pdW47VqHSKn14WYeOY5XZJZlc5IZ6dagR/gsZn7momOtdDZBRE42OW+hlDxoxX9pIfGUBA4C4UZ0s7/Y+hxaFLYyJL1s67kIPt3YdFz9bIUGYAKoclJGGPawxl5z6bxpBP8XtX0DTiyxfh5rCark88QrPw/vOILYpSCF8b7JHqN+iUThv0oscMnkTO6gz2Jp8Pawu3g96NzrflU6dPptNS/wJE59dBKmAL2CBxg9pDj+7KcFCjq7MSY/nPSDTPPrairbOtixCh4xceVBjBpRyBbnsiqfIuIOwYkb3iIqdOxXsGrOjfrBtKEhjm1E3g41aYe+f4oTU1frNWCZLyIjlqkzQssAqtqcnHDhDx6YJnBhmvYYxtnV3VMByDOwcvA9MxTXnzSS8Oooz7yT4dHUglOvbT/MzrQBDYbUL3/6Tg74P42Ik33DkDSKMCBYCX3df5sIjutnjQSjX/NI8YRk2P6QNp9bedZuhSS8e4j1Beqw7FO59yqADO60H4VinJEnfCK73B9NIWmXsGsjqLkMqusaZXP9zuUJSBz9weA7SwLpeu6jboCjbPbK9OXNWGHx4STby9lsyHOnV7VMrTP9aMmnxGkeqc/hp2dtoxusYS+thf7n9fDi7pHXaASaKEsUxdde1AP9SmzeMSHi8Lx2vuZ8U9Xh5exGGwuICiRCCT3q3N//tBUlSo0YrIAE5vvl9jYrTQNAWu8xAstVcXIyhQXoqnKhBKY9VFdJbnbIcI+SGecD9cjy9SjBcZZhpc20iY0aThlAcZMwfiLMhN2GwDaMzG45SIoZpLKLTcOD9cg02WyQjS2LxzcPUciPC/5mmaFuWeRBu4XmO+9nHCG3ga9hGF2FTDxfmj+1g04vVFjmGbl2PhjXJRjIEFvjLyu6m5TqN6KmyFxEA55siMqMMfdXqFAaJJ8xVdekigeuqdA4a3HhibwgghO10eWsfRN/xXn279Vw9fFnXZS4lw56+SlplpEqcklw9lJQsLczIc2F4YkEwWELuUwsxjjk/BEBCbIM/a3dbDYNisz5wvYCcZRgN8DPuf2J5qpPaTcv4U95/E4SYn2+G7LrkJdPG42SEp50e4fB8mmqOS2GeIALAtXZIBdDSiSHfhzyRoX2dcEW+oC30kLdzIQzbuMYwpLiD4Yt8xBEmbYBf6SsRJ7B5ob1D8yCKWK6T0T8i/5g6VpcUbYJ2TgrBG7jWS2eKp+bs+9wRRmoV/qOLbZPe9I7CLmt+zpSyIKdt7Qsjou0ozWc90PZk/bmIj8sx8zAdxiyq/YNhzqgyL0eO2ucUs2pfKXDKA9YE0Nbum5i6J6Ofe6VebudwPAieUN6T5nLcgiypo20oeHcBiW1qT4K/mzixg1fDZQ/Q3kbVibHnkCQWAQDGBydmaZ2HKV5oBi/lnQU/iRiWH9lIPze9iP1MvbD53vShweuN/ocbYn66bTqRsToWNCVC5PJw8Ad7avXxsopQ4GzkkjmFcBsaJVp6s9CJZ2MQtnU/aS3ZX8JIyZnmKC9n859GoAi1RNpx5MoB+fgEX6wGHfleVx9FeOMuchP6LX4+9sTxdljyL9x1yPDBUe32wtB+whMunGGVc4HX3aPA1k25IifCbXcXZHrVFmZAWZ1ewp0XSt1m1+K4MySBsxVCp/hT2KEy8JF8BXRc7YW1H165QRyGOyU4BE7h9JforkgSg2qH/+XxkFrLFeR5vQSOVN7wJP+iJX4ohOygi2/Ka5oDkyuz4dfa/nGgcNtDOwc6aYo/Hmyt4NoK5jH2ZbjcmH52qz3hBvHChbj4Kevk1zKIZ07tzPzC8RfMZgKq8t22AQ0LT3adRzdmJCdukqazm5Qd7JWQ8Ri7nWY+4T9zoh16gVmCHoNYG6KcBWx2kQ/G4SWNPGcV8ttM2FPOIZlgFTciVO2CpfSwo+4/Pg9CfUZBEoK7L+g/sA61g1wauizi8/ypCq1eDMOTkx7N28Uw28BhooUx6ITGIhmbfRvB/hk1dF8YVc0MND8TJ/1XrwkYyi0VNYissqbUi8J3l0haPRY2RNU54DUc1HfzofvtihinpInLkkMDUknWoP2UaAeMAnU0lImIh5RSlChLA2gLTk5OSv////9K/////0sAdJRiTXAChZRoFXSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
35
+ "dtype": "float32",
36
+ "_shape": [
37
+ 3
38
+ ],
39
+ "low": "[-1. -1. -1.]",
40
+ "high": "[1. 1. 1.]",
41
+ "bounded_below": "[ True True True]",
42
+ "bounded_above": "[ True True True]",
43
+ "_np_random": "RandomState(MT19937)"
44
+ },
45
+ "n_envs": 4,
46
+ "num_timesteps": 1500000,
47
+ "_total_timesteps": 1500000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": 11,
50
+ "action_noise": null,
51
+ "start_time": 1676362551940675681,
52
+ "learning_rate": 0.001,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'collections.OrderedDict'>",
60
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAeB7gPgIUGzz1Agg/eB7gPgIUGzz1Agg/eB7gPgIUGzz1Agg/eB7gPgIUGzz1Agg/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA3y+uv/VxBr9dlw8/pySNv39ilT+oG9S/pR2mvmV5Ar+xMDu/nJK8vmrqoz85vWW/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAB4HuA+AhQbPPUCCD+6z6g9cZ6guG+Nej14HuA+AhQbPPUCCD+6z6g9cZ6guG+Nej14HuA+AhQbPPUCCD+6z6g9cZ6guG+Nej14HuA+AhQbPPUCCD+6z6g9cZ6guG+Nej2UaA5LBEsGhpRoEnSUUpR1Lg==",
61
+ "achieved_goal": "[[0.43773246 0.00946522 0.5312951 ]\n [0.43773246 0.00946522 0.5312951 ]\n [0.43773246 0.00946522 0.5312951 ]\n [0.43773246 0.00946522 0.5312951 ]]",
62
+ "desired_goal": "[[-1.3608359 -0.52517635 0.5609034 ]\n [-1.102681 1.1670684 -1.657094 ]\n [-0.32444492 -0.50966483 -0.7312117 ]\n [-0.36830604 1.2805912 -0.89741856]]",
63
+ "observation": "[[ 4.3773246e-01 9.4652195e-03 5.3129512e-01 8.2427457e-02\n -7.6589065e-05 6.1170038e-02]\n [ 4.3773246e-01 9.4652195e-03 5.3129512e-01 8.2427457e-02\n -7.6589065e-05 6.1170038e-02]\n [ 4.3773246e-01 9.4652195e-03 5.3129512e-01 8.2427457e-02\n -7.6589065e-05 6.1170038e-02]\n [ 4.3773246e-01 9.4652195e-03 5.3129512e-01 8.2427457e-02\n -7.6589065e-05 6.1170038e-02]]"
64
+ },
65
+ "_last_episode_starts": {
66
+ ":type:": "<class 'numpy.ndarray'>",
67
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
68
+ },
69
+ "_last_original_obs": {
70
+ ":type:": "<class 'collections.OrderedDict'>",
71
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAURN+u0Pp671LB08+BLLNvKDwhTxDfgo+CsZdPWvjlD2uphU+oefuvRBoW712eVI9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
72
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
73
+ "desired_goal": "[[-0.00387688 -0.11519101 0.20217626]\n [-0.0251093 0.01635009 0.13524728]\n [ 0.05414394 0.07269939 0.14614365]\n [-0.11665273 -0.05356604 0.05138537]]",
74
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
75
+ },
76
+ "_episode_num": 0,
77
+ "use_sde": true,
78
+ "sde_sample_freq": -1,
79
+ "_current_progress_remaining": 0.0,
80
+ "ep_info_buffer": {
81
+ ":type:": "<class 'collections.deque'>",
82
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIYORlTSzw47+UhpRSlIwBbJRLMowBdJRHQLS/cZfUnXx1fZQoaAZoCWgPQwhwYd14d2TVv5SGlFKUaBVLMmgWR0C0v1IuGsV+dX2UKGgGaAloD0MIjnbc8Lvp67+UhpRSlGgVSzJoFkdAtL8ridat93V9lChoBmgJaA9DCJcd4h+29Oe/lIaUUpRoFUsyaBZHQLS/DMY/FBJ1fZQoaAZoCWgPQwi1/pYA/FPov5SGlFKUaBVLMmgWR0C0v/ye7L+xdX2UKGgGaAloD0MI+Z/83Ttq1b+UhpRSlGgVSzJoFkdAtL/dOxjawnV9lChoBmgJaA9DCJj75ChAFOe/lIaUUpRoFUsyaBZHQLS/tnuiN851fZQoaAZoCWgPQwjUug1qv7Xov5SGlFKUaBVLMmgWR0C0v5faQFLWdX2UKGgGaAloD0MIhuelYmNe47+UhpRSlGgVSzJoFkdAtMCAqpcX33V9lChoBmgJaA9DCFLX2vtUFeO/lIaUUpRoFUsyaBZHQLTAYS619fF1fZQoaAZoCWgPQwjmdi/3ydHiv5SGlFKUaBVLMmgWR0C0wDpy2hIwdX2UKGgGaAloD0MI7E0MyclE4b+UhpRSlGgVSzJoFkdAtMAbsTnJT3V9lChoBmgJaA9DCGqHvyZrVPG/lIaUUpRoFUsyaBZHQLTBLhKDkEN1fZQoaAZoCWgPQwgIVWr2QCvhv5SGlFKUaBVLMmgWR0C0wQ8xXXAedX2UKGgGaAloD0MI+1sC8E/p8r+UhpRSlGgVSzJoFkdAtMDo9jgAInV9lChoBmgJaA9DCLPqc7UVe/e/lIaUUpRoFUsyaBZHQLTAysbNr0t1fZQoaAZoCWgPQwgNObaeIZziv5SGlFKUaBVLMmgWR0C0wixkNFz/dX2UKGgGaAloD0MIZMkcy7uq8L+UhpRSlGgVSzJoFkdAtMINnwob43V9lChoBmgJaA9DCIIavoV1Y+W/lIaUUpRoFUsyaBZHQLTB51rIo3J1fZQoaAZoCWgPQwhX7ZqQ1ljxv5SGlFKUaBVLMmgWR0C0wclHrhR7dX2UKGgGaAloD0MIwRn8/WK207+UhpRSlGgVSzJoFkdAtMMl54W1t3V9lChoBmgJaA9DCK+YEd4ehOm/lIaUUpRoFUsyaBZHQLTDByFwkxB1fZQoaAZoCWgPQwgC1xUzwtvmv5SGlFKUaBVLMmgWR0C0wuC/KyOadX2UKGgGaAloD0MItRX7y+5J6L+UhpRSlGgVSzJoFkdAtMLCnMt9QXV9lChoBmgJaA9DCIqw4emVsum/lIaUUpRoFUsyaBZHQLTEJ3hXKbN1fZQoaAZoCWgPQwhgyOpWz0nwv5SGlFKUaBVLMmgWR0C0xAircTJydX2UKGgGaAloD0MI6Xx4liCj8b+UhpRSlGgVSzJoFkdAtMPie/YapHV9lChoBmgJaA9DCLZLGw5LA+6/lIaUUpRoFUsyaBZHQLTDxC79Q411fZQoaAZoCWgPQwgHXi13ZoLrv5SGlFKUaBVLMmgWR0C0xS7FXJYDdX2UKGgGaAloD0MIzok9tI+V5r+UhpRSlGgVSzJoFkdAtMUP6pHZsnV9lChoBmgJaA9DCLTpCOBm8fC/lIaUUpRoFUsyaBZHQLTE6bsF+ux1fZQoaAZoCWgPQwjb3QN0X87mv5SGlFKUaBVLMmgWR0C0xMuG47RwdX2UKGgGaAloD0MITU2CN6TR6L+UhpRSlGgVSzJoFkdAtMYuQIUrTnV9lChoBmgJaA9DCKg65Ga4AdW/lIaUUpRoFUsyaBZHQLTGDzTF2mp1fZQoaAZoCWgPQwiVZvM4DObjv5SGlFKUaBVLMmgWR0C0xejtoi9qdX2UKGgGaAloD0MIIqrwZ3iz17+UhpRSlGgVSzJoFkdAtMXKwUxmCnV9lChoBmgJaA9DCPVJ7rCJzNe/lIaUUpRoFUsyaBZHQLTHBV2Rq491fZQoaAZoCWgPQwiIhVrTvOPmv5SGlFKUaBVLMmgWR0C0xuYD1XeWdX2UKGgGaAloD0MIyR8MPPce0r+UhpRSlGgVSzJoFkdAtMa/Q+lj3HV9lChoBmgJaA9DCF3iyAORReG/lIaUUpRoFUsyaBZHQLTGoKCg9Nh1fZQoaAZoCWgPQwgfSN45lCHtv5SGlFKUaBVLMmgWR0C0x5nX7LuAdX2UKGgGaAloD0MIbhPulXmr6b+UhpRSlGgVSzJoFkdAtMd6kCV8kXV9lChoBmgJaA9DCAN7TKQ0G+S/lIaUUpRoFUsyaBZHQLTHU85CF9N1fZQoaAZoCWgPQwjH2t/ZHj3lv5SGlFKUaBVLMmgWR0C0xzUiMYMwdX2UKGgGaAloD0MIbVSnA1lP77+UhpRSlGgVSzJoFkdAtMgqU2UB4nV9lChoBmgJaA9DCE9Xdyy2ye6/lIaUUpRoFUsyaBZHQLTICwI+nqF1fZQoaAZoCWgPQwhJSQ9DqxPtv5SGlFKUaBVLMmgWR0C0x+RM36yjdX2UKGgGaAloD0MIzHnGvmTj87+UhpRSlGgVSzJoFkdAtMfFnlGPP3V9lChoBmgJaA9DCAPpYtNKoeu/lIaUUpRoFUsyaBZHQLTIvUqhDgJ1fZQoaAZoCWgPQwgEqn8QyVDwv5SGlFKUaBVLMmgWR0C0yJ3VPN3XdX2UKGgGaAloD0MIJa5jXHHx5L+UhpRSlGgVSzJoFkdAtMh3HAAQx3V9lChoBmgJaA9DCLcpHhfVoue/lIaUUpRoFUsyaBZHQLTIWFWXC0p1fZQoaAZoCWgPQwgJjWDj+rf2v5SGlFKUaBVLMmgWR0C0yVgCKaXsdX2UKGgGaAloD0MIJzPeVnpt6b+UhpRSlGgVSzJoFkdAtMk4sEq2B3V9lChoBmgJaA9DCEkO2NXkKea/lIaUUpRoFUsyaBZHQLTJEdZ7ojh1fZQoaAZoCWgPQwiJYvIGmHnsv5SGlFKUaBVLMmgWR0C0yPMmnfl7dX2UKGgGaAloD0MI325JDtjV1L+UhpRSlGgVSzJoFkdAtMnfqLS/kHV9lChoBmgJaA9DCOJYF7fRgOW/lIaUUpRoFUsyaBZHQLTJwDZDiOx1fZQoaAZoCWgPQwgQP/89eK32v5SGlFKUaBVLMmgWR0C0yZlhLGrCdX2UKGgGaAloD0MIzPEKRE8K8r+UhpRSlGgVSzJoFkdAtMl6r6tT1nV9lChoBmgJaA9DCJEnSddMfvO/lIaUUpRoFUsyaBZHQLTKZ90Rvm51fZQoaAZoCWgPQwge+YOB5170v5SGlFKUaBVLMmgWR0C0ykh/mT1TdX2UKGgGaAloD0MIiQeUTbkC9b+UhpRSlGgVSzJoFkdAtMohxZMcqHV9lChoBmgJaA9DCAa4IFuWr/q/lIaUUpRoFUsyaBZHQLTKAw7DEWJ1fZQoaAZoCWgPQwjChxItebzmv5SGlFKUaBVLMmgWR0C0yvmIoE0SdX2UKGgGaAloD0MI0LNZ9bma8L+UhpRSlGgVSzJoFkdAtMrajDbaiHV9lChoBmgJaA9DCDLLngQ2Z+e/lIaUUpRoFUsyaBZHQLTKs+5OJtV1fZQoaAZoCWgPQwjT2F4Leq/4v5SGlFKUaBVLMmgWR0C0ypU/bCaadX2UKGgGaAloD0MIi98UViqo9L+UhpRSlGgVSzJoFkdAtMt/LV4HHHV9lChoBmgJaA9DCBlUG5yIfvC/lIaUUpRoFUsyaBZHQLTLX9CeEqV1fZQoaAZoCWgPQwhJvhJIid3pv5SGlFKUaBVLMmgWR0C0yzkn5SFXdX2UKGgGaAloD0MIy2Wjc36K5L+UhpRSlGgVSzJoFkdAtMsab7TDwnV9lChoBmgJaA9DCL6+1qVGqPS/lIaUUpRoFUsyaBZHQLTMCpL26Cl1fZQoaAZoCWgPQwg6zm3CvbLsv5SGlFKUaBVLMmgWR0C0y+tHUc4pdX2UKGgGaAloD0MIV12Hakqy4b+UhpRSlGgVSzJoFkdAtMvEeRxLkHV9lChoBmgJaA9DCDUKSWb1jvK/lIaUUpRoFUsyaBZHQLTLpczqKP51fZQoaAZoCWgPQwiwNzEkJ7MAwJSGlFKUaBVLMmgWR0C0zJDZtelbdX2UKGgGaAloD0MIEXNJ1XaT5L+UhpRSlGgVSzJoFkdAtMxxcSoOx3V9lChoBmgJaA9DCIWX4NQHkvG/lIaUUpRoFUsyaBZHQLTMSqM3qA11fZQoaAZoCWgPQwiHw9LAj2rwv5SGlFKUaBVLMmgWR0C0zCvoNd7fdX2UKGgGaAloD0MIvp8aL90k87+UhpRSlGgVSzJoFkdAtM0ZnoPkJnV9lChoBmgJaA9DCJQSglX1cvC/lIaUUpRoFUsyaBZHQLTM+kPMB6t1fZQoaAZoCWgPQwgjTFEujV/yv5SGlFKUaBVLMmgWR0C0zNN7fHghdX2UKGgGaAloD0MIAHLChNEs/7+UhpRSlGgVSzJoFkdAtMy0yxiXpnV9lChoBmgJaA9DCFa3ek563+m/lIaUUpRoFUsyaBZHQLTNo1Cw8nx1fZQoaAZoCWgPQwgQkZp2Mc3uv5SGlFKUaBVLMmgWR0C0zYQIMSbpdX2UKGgGaAloD0MIWoRiK2ia97+UhpRSlGgVSzJoFkdAtM1dqTKT0XV9lChoBmgJaA9DCA+22O2zyuG/lIaUUpRoFUsyaBZHQLTNPxUNrj51fZQoaAZoCWgPQwjyC68keS7lv5SGlFKUaBVLMmgWR0C0ziyy6cy4dX2UKGgGaAloD0MIKZMa2gAs8b+UhpRSlGgVSzJoFkdAtM4NSR8tw3V9lChoBmgJaA9DCJ9VZkrrL/q/lIaUUpRoFUsyaBZHQLTN5oexOcl1fZQoaAZoCWgPQwgqOLwgIvXwv5SGlFKUaBVLMmgWR0C0zcfMB6rvdX2UKGgGaAloD0MIwytJnuv73r+UhpRSlGgVSzJoFkdAtM6xU83dbnV9lChoBmgJaA9DCD7o2az6XPe/lIaUUpRoFUsyaBZHQLTOkdcB2fV1fZQoaAZoCWgPQwhUck7soX3hv5SGlFKUaBVLMmgWR0C0zmsVQAMldX2UKGgGaAloD0MI7l7uk6MA5r+UhpRSlGgVSzJoFkdAtM5MSUTtcHV9lChoBmgJaA9DCBCv6xfsBum/lIaUUpRoFUsyaBZHQLTPO1PFefJ1fZQoaAZoCWgPQwjPv1326470v5SGlFKUaBVLMmgWR0C0zxvozN2UdX2UKGgGaAloD0MI5gXYR6du8r+UhpRSlGgVSzJoFkdAtM71H4Glh3V9lChoBmgJaA9DCBtGQfD4tve/lIaUUpRoFUsyaBZHQLTO1ml67d11ZS4="
83
+ },
84
+ "ep_success_buffer": {
85
+ ":type:": "<class 'collections.deque'>",
86
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
87
+ },
88
+ "_n_updates": 46875,
89
+ "n_steps": 8,
90
+ "gamma": 0.95,
91
+ "gae_lambda": 0.9,
92
+ "ent_coef": 0.0,
93
+ "vf_coef": 0.4,
94
+ "max_grad_norm": 0.5,
95
+ "normalize_advantage": false
96
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5b2bff2fa6b8a6db85792945994817e7d0b8d392bea27efac4f3cc2214081469
3
+ size 45438
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b305841885ad93fb39e26f2b8fadcd77262240204e4b46f42353c8314c612019
3
+ size 46718
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7efb55434670>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7efb55417f00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWV9QsAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEl9fcmFuZG9tc3RhdGVfY3RvcpSTlIwHTVQxOTkzN5SFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylGgwjAVzdGF0ZZR9lCiMA2tleZRoEiiWwAkAAAAAAAAAAACAfSstTDVk1PaYhkOpv5znPMMetBi8apu4yv+8O9IpLSXVK+LNuumJNM0Ozyqh1B15PkRWFSW2qD/jnsTUdAu/tK7wIhelF9YdH+RHo9LU12o7D7xvgJ5jXXWeCb1YNanwo4TaG05fJvGIXffoXhDy1+SkocwCY3zDqPchT3mR0XXblbAFPd/+iOJTel3L+GlSfzi7Z1nWKIlSJ+wevtUHcTOHpHXpysG+A3Vuzznf1HWJczU4nF5h4wV+/59DOwPtpemjnIMuQHf9cI9or0mKfKKbijcf35AC6W9lFT+v/ub2LmU9RaQKTt6yyZMuaZmWTg/Ohz3P3hBcardeKsCqvjMKXZdsPgsfXfsyC0ERO8hoRQXVKfBvBX7mPoZTSFBax8tYjrrWDVUAu+nJ7RKMYE2m3xFtODSWj7TG3fVL9qCTxqtm9cGtPWNbScS3TQyZXmEFsV3vIBqmhB8Pz70e2NqCOCZZGowVz8nqjehM3oEt47Zun/A5si83pQK4Sn0bNyI6GQtFpblzeg4Y68tPULf5hPpZyUXgaUBvMn7qgi5r1DqTtNgFzCJ8jXd+aO7T2RS++GLlK3UeucvI/8F31thAd33dgOmDgy7AtQYidSgd+D9zGZzv0WSKZc9SuzH6zjp3k41v3gtg/78eWACezisqBSaNtous6H5Z3uP19fNWCWkPoWKuJWGinZ69yiCitrUCDLpSMM3VR0rfMP04VMY2Jeu8F1UH1TIJ9eY9d1RV6/+Z22oDZZMhotQ7sjgc1NpCoSLR4d76yf7e8a0R57YPbza3zyOOEHXeZ8cXc2hmRz7M0QS8P3f4WPBVi6Bj4yEydNRDHHhrztETDqBt9Iws6THSx+5SsZL7bfE+x3X2GtENgUDcreOBeh7UgAqifEIeSZfK0G3ir1gRMae1HX3a1jbjijVLNjGy465/WGWardhVbudKkhEzcgEhxcf9JmPqCp83+e4SMcEg5DuXkwE+po7/r2LgajH+StyZmoTUc0qfPSUu1CjdtUpX1AWrH5p8EAJNJ5apRD5cQ9yXhQuzjrRJnHGSDrBdWFwyKQQH2BUiRFYhLCH7mmNhj738YTIacjZRRDRy9rlwoCWX2dHoEJhTtmuHLZmZSN/lttH5gmIiSFzx7ljii72lAJWFSqME/tPeBLUy+m6axmd9b4RZvki2kGwosymIb06FkBDX4gLO8DuGWOKmyWZytm4TTHAViVoWCCgM+4+SKE1kD/rR5QDXLk7YHzCNqp2pdW47VqHSKn14WYeOY5XZJZlc5IZ6dagR/gsZn7momOtdDZBRE42OW+hlDxoxX9pIfGUBA4C4UZ0s7/Y+hxaFLYyJL1s67kIPt3YdFz9bIUGYAKoclJGGPawxl5z6bxpBP8XtX0DTiyxfh5rCark88QrPw/vOILYpSCF8b7JHqN+iUThv0oscMnkTO6gz2Jp8Pawu3g96NzrflU6dPptNS/wJE59dBKmAL2CBxg9pDj+7KcFCjq7MSY/nPSDTPPrairbOtixCh4xceVBjBpRyBbnsiqfIuIOwYkb3iIqdOxXsGrOjfrBtKEhjm1E3g41aYe+f4oTU1frNWCZLyIjlqkzQssAqtqcnHDhDx6YJnBhmvYYxtnV3VMByDOwcvA9MxTXnzSS8Oooz7yT4dHUglOvbT/MzrQBDYbUL3/6Tg74P42Ik33DkDSKMCBYCX3df5sIjutnjQSjX/NI8YRk2P6QNp9bedZuhSS8e4j1Beqw7FO59yqADO60H4VinJEnfCK73B9NIWmXsGsjqLkMqusaZXP9zuUJSBz9weA7SwLpeu6jboCjbPbK9OXNWGHx4STby9lsyHOnV7VMrTP9aMmnxGkeqc/hp2dtoxusYS+thf7n9fDi7pHXaASaKEsUxdde1AP9SmzeMSHi8Lx2vuZ8U9Xh5exGGwuICiRCCT3q3N//tBUlSo0YrIAE5vvl9jYrTQNAWu8xAstVcXIyhQXoqnKhBKY9VFdJbnbIcI+SGecD9cjy9SjBcZZhpc20iY0aThlAcZMwfiLMhN2GwDaMzG45SIoZpLKLTcOD9cg02WyQjS2LxzcPUciPC/5mmaFuWeRBu4XmO+9nHCG3ga9hGF2FTDxfmj+1g04vVFjmGbl2PhjXJRjIEFvjLyu6m5TqN6KmyFxEA55siMqMMfdXqFAaJJ8xVdekigeuqdA4a3HhibwgghO10eWsfRN/xXn279Vw9fFnXZS4lw56+SlplpEqcklw9lJQsLczIc2F4YkEwWELuUwsxjjk/BEBCbIM/a3dbDYNisz5wvYCcZRgN8DPuf2J5qpPaTcv4U95/E4SYn2+G7LrkJdPG42SEp50e4fB8mmqOS2GeIALAtXZIBdDSiSHfhzyRoX2dcEW+oC30kLdzIQzbuMYwpLiD4Yt8xBEmbYBf6SsRJ7B5ob1D8yCKWK6T0T8i/5g6VpcUbYJ2TgrBG7jWS2eKp+bs+9wRRmoV/qOLbZPe9I7CLmt+zpSyIKdt7Qsjou0ozWc90PZk/bmIj8sx8zAdxiyq/YNhzqgyL0eO2ucUs2pfKXDKA9YE0Nbum5i6J6Ofe6VebudwPAieUN6T5nLcgiypo20oeHcBiW1qT4K/mzixg1fDZQ/Q3kbVibHnkCQWAQDGBydmaZ2HKV5oBi/lnQU/iRiWH9lIPze9iP1MvbD53vShweuN/ocbYn66bTqRsToWNCVC5PJw8Ad7avXxsopQ4GzkkjmFcBsaJVp6s9CJZ2MQtnU/aS3ZX8JIyZnmKC9n859GoAi1RNpx5MoB+fgEX6wGHfleVx9FeOMuchP6LX4+9sTxdljyL9x1yPDBUe32wtB+whMunGGVc4HX3aPA1k25IifCbXcXZHrVFmZAWZ1ewp0XSt1m1+K4MySBsxVCp/hT2KEy8JF8BXRc7YW1H165QRyGOyU4BE7h9JforkgSg2qH/+XxkFrLFeR5vQSOVN7wJP+iJX4ohOygi2/Ka5oDkyuz4dfa/nGgcNtDOwc6aYo/Hmyt4NoK5jH2ZbjcmH52qz3hBvHChbj4Kevk1zKIZ07tzPzC8RfMZgKq8t22AQ0LT3adRzdmJCdukqazm5Qd7JWQ8Ri7nWY+4T9zoh16gVmCHoNYG6KcBWx2kQ/G4SWNPGcV8ttM2FPOIZlgFTciVO2CpfSwo+4/Pg9CfUZBEoK7L+g/sA61g1wauizi8/ypCq1eDMOTkx7N28Uw28BhooUx6ITGIhmbfRvB/hk1dF8YVc0MND8TJ/1XrwkYyi0VNYissqbUi8J3l0haPRY2RNU54DUc1HfzofvtihinpInLkkMDUknWoP2UaAeMAnU0lImIh5RSlChLA2gLTk5OSv////9K/////0sAdJRiTXAChZRoFXSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": "RandomState(MT19937)"}, "n_envs": 4, "num_timesteps": 1500000, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": 11, "action_noise": null, "start_time": 1676362551940675681, "learning_rate": 0.001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAeB7gPgIUGzz1Agg/eB7gPgIUGzz1Agg/eB7gPgIUGzz1Agg/eB7gPgIUGzz1Agg/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA3y+uv/VxBr9dlw8/pySNv39ilT+oG9S/pR2mvmV5Ar+xMDu/nJK8vmrqoz85vWW/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAB4HuA+AhQbPPUCCD+6z6g9cZ6guG+Nej14HuA+AhQbPPUCCD+6z6g9cZ6guG+Nej14HuA+AhQbPPUCCD+6z6g9cZ6guG+Nej14HuA+AhQbPPUCCD+6z6g9cZ6guG+Nej2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.43773246 0.00946522 0.5312951 ]\n [0.43773246 0.00946522 0.5312951 ]\n [0.43773246 0.00946522 0.5312951 ]\n [0.43773246 0.00946522 0.5312951 ]]", "desired_goal": "[[-1.3608359 -0.52517635 0.5609034 ]\n [-1.102681 1.1670684 -1.657094 ]\n [-0.32444492 -0.50966483 -0.7312117 ]\n [-0.36830604 1.2805912 -0.89741856]]", "observation": "[[ 4.3773246e-01 9.4652195e-03 5.3129512e-01 8.2427457e-02\n -7.6589065e-05 6.1170038e-02]\n [ 4.3773246e-01 9.4652195e-03 5.3129512e-01 8.2427457e-02\n -7.6589065e-05 6.1170038e-02]\n [ 4.3773246e-01 9.4652195e-03 5.3129512e-01 8.2427457e-02\n -7.6589065e-05 6.1170038e-02]\n [ 4.3773246e-01 9.4652195e-03 5.3129512e-01 8.2427457e-02\n -7.6589065e-05 6.1170038e-02]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAURN+u0Pp671LB08+BLLNvKDwhTxDfgo+CsZdPWvjlD2uphU+oefuvRBoW712eVI9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.00387688 -0.11519101 0.20217626]\n [-0.0251093 0.01635009 0.13524728]\n [ 0.05414394 0.07269939 0.14614365]\n [-0.11665273 -0.05356604 0.05138537]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIYORlTSzw47+UhpRSlIwBbJRLMowBdJRHQLS/cZfUnXx1fZQoaAZoCWgPQwhwYd14d2TVv5SGlFKUaBVLMmgWR0C0v1IuGsV+dX2UKGgGaAloD0MIjnbc8Lvp67+UhpRSlGgVSzJoFkdAtL8ridat93V9lChoBmgJaA9DCJcd4h+29Oe/lIaUUpRoFUsyaBZHQLS/DMY/FBJ1fZQoaAZoCWgPQwi1/pYA/FPov5SGlFKUaBVLMmgWR0C0v/ye7L+xdX2UKGgGaAloD0MI+Z/83Ttq1b+UhpRSlGgVSzJoFkdAtL/dOxjawnV9lChoBmgJaA9DCJj75ChAFOe/lIaUUpRoFUsyaBZHQLS/tnuiN851fZQoaAZoCWgPQwjUug1qv7Xov5SGlFKUaBVLMmgWR0C0v5faQFLWdX2UKGgGaAloD0MIhuelYmNe47+UhpRSlGgVSzJoFkdAtMCAqpcX33V9lChoBmgJaA9DCFLX2vtUFeO/lIaUUpRoFUsyaBZHQLTAYS619fF1fZQoaAZoCWgPQwjmdi/3ydHiv5SGlFKUaBVLMmgWR0C0wDpy2hIwdX2UKGgGaAloD0MI7E0MyclE4b+UhpRSlGgVSzJoFkdAtMAbsTnJT3V9lChoBmgJaA9DCGqHvyZrVPG/lIaUUpRoFUsyaBZHQLTBLhKDkEN1fZQoaAZoCWgPQwgIVWr2QCvhv5SGlFKUaBVLMmgWR0C0wQ8xXXAedX2UKGgGaAloD0MI+1sC8E/p8r+UhpRSlGgVSzJoFkdAtMDo9jgAInV9lChoBmgJaA9DCLPqc7UVe/e/lIaUUpRoFUsyaBZHQLTAysbNr0t1fZQoaAZoCWgPQwgNObaeIZziv5SGlFKUaBVLMmgWR0C0wixkNFz/dX2UKGgGaAloD0MIZMkcy7uq8L+UhpRSlGgVSzJoFkdAtMINnwob43V9lChoBmgJaA9DCIIavoV1Y+W/lIaUUpRoFUsyaBZHQLTB51rIo3J1fZQoaAZoCWgPQwhX7ZqQ1ljxv5SGlFKUaBVLMmgWR0C0wclHrhR7dX2UKGgGaAloD0MIwRn8/WK207+UhpRSlGgVSzJoFkdAtMMl54W1t3V9lChoBmgJaA9DCK+YEd4ehOm/lIaUUpRoFUsyaBZHQLTDByFwkxB1fZQoaAZoCWgPQwgC1xUzwtvmv5SGlFKUaBVLMmgWR0C0wuC/KyOadX2UKGgGaAloD0MItRX7y+5J6L+UhpRSlGgVSzJoFkdAtMLCnMt9QXV9lChoBmgJaA9DCIqw4emVsum/lIaUUpRoFUsyaBZHQLTEJ3hXKbN1fZQoaAZoCWgPQwhgyOpWz0nwv5SGlFKUaBVLMmgWR0C0xAircTJydX2UKGgGaAloD0MI6Xx4liCj8b+UhpRSlGgVSzJoFkdAtMPie/YapHV9lChoBmgJaA9DCLZLGw5LA+6/lIaUUpRoFUsyaBZHQLTDxC79Q411fZQoaAZoCWgPQwgHXi13ZoLrv5SGlFKUaBVLMmgWR0C0xS7FXJYDdX2UKGgGaAloD0MIzok9tI+V5r+UhpRSlGgVSzJoFkdAtMUP6pHZsnV9lChoBmgJaA9DCLTpCOBm8fC/lIaUUpRoFUsyaBZHQLTE6bsF+ux1fZQoaAZoCWgPQwjb3QN0X87mv5SGlFKUaBVLMmgWR0C0xMuG47RwdX2UKGgGaAloD0MITU2CN6TR6L+UhpRSlGgVSzJoFkdAtMYuQIUrTnV9lChoBmgJaA9DCKg65Ga4AdW/lIaUUpRoFUsyaBZHQLTGDzTF2mp1fZQoaAZoCWgPQwiVZvM4DObjv5SGlFKUaBVLMmgWR0C0xejtoi9qdX2UKGgGaAloD0MIIqrwZ3iz17+UhpRSlGgVSzJoFkdAtMXKwUxmCnV9lChoBmgJaA9DCPVJ7rCJzNe/lIaUUpRoFUsyaBZHQLTHBV2Rq491fZQoaAZoCWgPQwiIhVrTvOPmv5SGlFKUaBVLMmgWR0C0xuYD1XeWdX2UKGgGaAloD0MIyR8MPPce0r+UhpRSlGgVSzJoFkdAtMa/Q+lj3HV9lChoBmgJaA9DCF3iyAORReG/lIaUUpRoFUsyaBZHQLTGoKCg9Nh1fZQoaAZoCWgPQwgfSN45lCHtv5SGlFKUaBVLMmgWR0C0x5nX7LuAdX2UKGgGaAloD0MIbhPulXmr6b+UhpRSlGgVSzJoFkdAtMd6kCV8kXV9lChoBmgJaA9DCAN7TKQ0G+S/lIaUUpRoFUsyaBZHQLTHU85CF9N1fZQoaAZoCWgPQwjH2t/ZHj3lv5SGlFKUaBVLMmgWR0C0xzUiMYMwdX2UKGgGaAloD0MIbVSnA1lP77+UhpRSlGgVSzJoFkdAtMgqU2UB4nV9lChoBmgJaA9DCE9Xdyy2ye6/lIaUUpRoFUsyaBZHQLTICwI+nqF1fZQoaAZoCWgPQwhJSQ9DqxPtv5SGlFKUaBVLMmgWR0C0x+RM36yjdX2UKGgGaAloD0MIzHnGvmTj87+UhpRSlGgVSzJoFkdAtMfFnlGPP3V9lChoBmgJaA9DCAPpYtNKoeu/lIaUUpRoFUsyaBZHQLTIvUqhDgJ1fZQoaAZoCWgPQwgEqn8QyVDwv5SGlFKUaBVLMmgWR0C0yJ3VPN3XdX2UKGgGaAloD0MIJa5jXHHx5L+UhpRSlGgVSzJoFkdAtMh3HAAQx3V9lChoBmgJaA9DCLcpHhfVoue/lIaUUpRoFUsyaBZHQLTIWFWXC0p1fZQoaAZoCWgPQwgJjWDj+rf2v5SGlFKUaBVLMmgWR0C0yVgCKaXsdX2UKGgGaAloD0MIJzPeVnpt6b+UhpRSlGgVSzJoFkdAtMk4sEq2B3V9lChoBmgJaA9DCEkO2NXkKea/lIaUUpRoFUsyaBZHQLTJEdZ7ojh1fZQoaAZoCWgPQwiJYvIGmHnsv5SGlFKUaBVLMmgWR0C0yPMmnfl7dX2UKGgGaAloD0MI325JDtjV1L+UhpRSlGgVSzJoFkdAtMnfqLS/kHV9lChoBmgJaA9DCOJYF7fRgOW/lIaUUpRoFUsyaBZHQLTJwDZDiOx1fZQoaAZoCWgPQwgQP/89eK32v5SGlFKUaBVLMmgWR0C0yZlhLGrCdX2UKGgGaAloD0MIzPEKRE8K8r+UhpRSlGgVSzJoFkdAtMl6r6tT1nV9lChoBmgJaA9DCJEnSddMfvO/lIaUUpRoFUsyaBZHQLTKZ90Rvm51fZQoaAZoCWgPQwge+YOB5170v5SGlFKUaBVLMmgWR0C0ykh/mT1TdX2UKGgGaAloD0MIiQeUTbkC9b+UhpRSlGgVSzJoFkdAtMohxZMcqHV9lChoBmgJaA9DCAa4IFuWr/q/lIaUUpRoFUsyaBZHQLTKAw7DEWJ1fZQoaAZoCWgPQwjChxItebzmv5SGlFKUaBVLMmgWR0C0yvmIoE0SdX2UKGgGaAloD0MI0LNZ9bma8L+UhpRSlGgVSzJoFkdAtMrajDbaiHV9lChoBmgJaA9DCDLLngQ2Z+e/lIaUUpRoFUsyaBZHQLTKs+5OJtV1fZQoaAZoCWgPQwjT2F4Leq/4v5SGlFKUaBVLMmgWR0C0ypU/bCaadX2UKGgGaAloD0MIi98UViqo9L+UhpRSlGgVSzJoFkdAtMt/LV4HHHV9lChoBmgJaA9DCBlUG5yIfvC/lIaUUpRoFUsyaBZHQLTLX9CeEqV1fZQoaAZoCWgPQwhJvhJIid3pv5SGlFKUaBVLMmgWR0C0yzkn5SFXdX2UKGgGaAloD0MIy2Wjc36K5L+UhpRSlGgVSzJoFkdAtMsab7TDwnV9lChoBmgJaA9DCL6+1qVGqPS/lIaUUpRoFUsyaBZHQLTMCpL26Cl1fZQoaAZoCWgPQwg6zm3CvbLsv5SGlFKUaBVLMmgWR0C0y+tHUc4pdX2UKGgGaAloD0MIV12Hakqy4b+UhpRSlGgVSzJoFkdAtMvEeRxLkHV9lChoBmgJaA9DCDUKSWb1jvK/lIaUUpRoFUsyaBZHQLTLpczqKP51fZQoaAZoCWgPQwiwNzEkJ7MAwJSGlFKUaBVLMmgWR0C0zJDZtelbdX2UKGgGaAloD0MIEXNJ1XaT5L+UhpRSlGgVSzJoFkdAtMxxcSoOx3V9lChoBmgJaA9DCIWX4NQHkvG/lIaUUpRoFUsyaBZHQLTMSqM3qA11fZQoaAZoCWgPQwiHw9LAj2rwv5SGlFKUaBVLMmgWR0C0zCvoNd7fdX2UKGgGaAloD0MIvp8aL90k87+UhpRSlGgVSzJoFkdAtM0ZnoPkJnV9lChoBmgJaA9DCJQSglX1cvC/lIaUUpRoFUsyaBZHQLTM+kPMB6t1fZQoaAZoCWgPQwgjTFEujV/yv5SGlFKUaBVLMmgWR0C0zNN7fHghdX2UKGgGaAloD0MIAHLChNEs/7+UhpRSlGgVSzJoFkdAtMy0yxiXpnV9lChoBmgJaA9DCFa3ek563+m/lIaUUpRoFUsyaBZHQLTNo1Cw8nx1fZQoaAZoCWgPQwgQkZp2Mc3uv5SGlFKUaBVLMmgWR0C0zYQIMSbpdX2UKGgGaAloD0MIWoRiK2ia97+UhpRSlGgVSzJoFkdAtM1dqTKT0XV9lChoBmgJaA9DCA+22O2zyuG/lIaUUpRoFUsyaBZHQLTNPxUNrj51fZQoaAZoCWgPQwjyC68keS7lv5SGlFKUaBVLMmgWR0C0ziyy6cy4dX2UKGgGaAloD0MIKZMa2gAs8b+UhpRSlGgVSzJoFkdAtM4NSR8tw3V9lChoBmgJaA9DCJ9VZkrrL/q/lIaUUpRoFUsyaBZHQLTN5oexOcl1fZQoaAZoCWgPQwgqOLwgIvXwv5SGlFKUaBVLMmgWR0C0zcfMB6rvdX2UKGgGaAloD0MIwytJnuv73r+UhpRSlGgVSzJoFkdAtM6xU83dbnV9lChoBmgJaA9DCD7o2az6XPe/lIaUUpRoFUsyaBZHQLTOkdcB2fV1fZQoaAZoCWgPQwhUck7soX3hv5SGlFKUaBVLMmgWR0C0zmsVQAMldX2UKGgGaAloD0MI7l7uk6MA5r+UhpRSlGgVSzJoFkdAtM5MSUTtcHV9lChoBmgJaA9DCBCv6xfsBum/lIaUUpRoFUsyaBZHQLTPO1PFefJ1fZQoaAZoCWgPQwjPv1326470v5SGlFKUaBVLMmgWR0C0zxvozN2UdX2UKGgGaAloD0MI5gXYR6du8r+UhpRSlGgVSzJoFkdAtM71H4Glh3V9lChoBmgJaA9DCBtGQfD4tve/lIaUUpRoFUsyaBZHQLTO1ml67d11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 46875, "n_steps": 8, "gamma": 0.95, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (358 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -0.7400433323346078, "std_reward": 0.2686285624355803, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-14T09:49:45.387821"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fac00df9978bb2e4fab0ad37855be50b29b4801b82225bbd698a85a8aec4fdd7
3
+ size 3049