--- license: mit base_model: facebook/w2v-bert-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: malayalam_combined_Read results: [] --- [Visualize in Weights & Biases](https://wandb.ai/krishnan-aravind/huggingface/runs/if5rp2lo) # malayalam_combined_Read This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1389 - Wer: 0.1305 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:------:| | 0.3294 | 0.4378 | 500 | 0.2872 | 0.3888 | | 0.2522 | 0.8757 | 1000 | 0.2404 | 0.3214 | | 0.2017 | 1.3135 | 1500 | 0.2100 | 0.3247 | | 0.19 | 1.7513 | 2000 | 0.2004 | 0.2744 | | 0.1443 | 2.1891 | 2500 | 0.1791 | 0.2370 | | 0.1484 | 2.6270 | 3000 | 0.1684 | 0.2309 | | 0.1232 | 3.0648 | 3500 | 0.1672 | 0.2114 | | 0.1135 | 3.5026 | 4000 | 0.1584 | 0.2031 | | 0.1152 | 3.9405 | 4500 | 0.1457 | 0.1841 | | 0.0904 | 4.3783 | 5000 | 0.1528 | 0.1870 | | 0.0887 | 4.8161 | 5500 | 0.1455 | 0.1726 | | 0.0768 | 5.2539 | 6000 | 0.1471 | 0.1636 | | 0.069 | 5.6918 | 6500 | 0.1463 | 0.1578 | | 0.0587 | 6.1296 | 7000 | 0.1401 | 0.1582 | | 0.0537 | 6.5674 | 7500 | 0.1377 | 0.1485 | | 0.0534 | 7.0053 | 8000 | 0.1278 | 0.1459 | | 0.0397 | 7.4431 | 8500 | 0.1284 | 0.1418 | | 0.0433 | 7.8809 | 9000 | 0.1274 | 0.1414 | | 0.0323 | 8.3187 | 9500 | 0.1299 | 0.1357 | | 0.0364 | 8.7566 | 10000 | 0.1340 | 0.1348 | | 0.0219 | 9.1944 | 10500 | 0.1350 | 0.1335 | | 0.0245 | 9.6322 | 11000 | 0.1389 | 0.1305 | ### Framework versions - Transformers 4.43.0.dev0 - Pytorch 1.14.0a0+44dac51 - Datasets 2.16.1 - Tokenizers 0.19.1