File size: 1,814 Bytes
2c83deb d70b1c6 2c83deb 732c9a5 2c83deb 26fde58 2c83deb 7fd98b7 2c83deb 2c745bf 2c83deb 732c9a5 be1c648 2c83deb be8f6aa 2c83deb 4fa2b44 2c83deb be1c648 ecee85b be1c648 43b0eb9 be8f6aa 2c83deb 01e3be6 7fd98b7 b4614a6 01e3be6 ff2ef5c 22d7300 ba24c0a 22d7300 2c83deb d188461 ba24c0a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
from typing import Dict, List, Any
from PIL import Image
import torch
from diffusers import StableDiffusionUpscalePipeline
import base64
from io import BytesIO
from transformers.utils import logging
logging.set_verbosity_info()
logger = logging.get_logger("transformers")
logger.info("INFO")
logger.warning("WARN")
# set device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
#if device.type != 'cuda':
# raise ValueError("need to run on GPU")
class EndpointHandler():
def __init__(self, path=""):
self.path = path
# load the optimized model
#model_id = "stabilityai/stable-diffusion-x4-upscaler"
def __call__(self, data) -> List[Dict[str, Any]]:
"""
Args:
image (:obj:`string`)
Return:
A :obj:`dict`:. base64 encoded image
"""
self.pipe = StableDiffusionUpscalePipeline.from_pretrained(self.path, torch_dtype=torch.float16)
self.pipe = self.pipe.to(device)
#self.pipe.enable_xformers_memory_efficient_attention()
logger.info('data received %s', data)
inputs = data.get("inputs")
logger.info('inputs received %s', inputs)
image_base64 = base64.b64decode(inputs['image'])
logger.info('image_base64')
image_bytes = BytesIO(image_base64)
logger.info('image_bytes')
image = Image.open(image_bytes).convert("RGB")
prompt = inputs['prompt']
logger.info('image')
upscaled_image = self.pipe(prompt, image).images[0]
buffered = BytesIO()
upscaled_image.save(buffered, format="JPEG")
img_str = base64.b64encode(buffered.getvalue())
# postprocess the prediction
return {"image": img_str.decode()}
#return {"image": "test"}
|