Update handler.py
Browse files- handler.py +6 -17
handler.py
CHANGED
@@ -1,31 +1,19 @@
|
|
1 |
from typing import Any, Dict
|
2 |
|
3 |
import torch
|
4 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
5 |
-
|
6 |
-
# from peft import PeftConfig, PeftModel
|
7 |
|
8 |
|
9 |
class EndpointHandler:
|
10 |
def __init__(self, path=""):
|
11 |
# load model and processor from path
|
12 |
self.tokenizer = AutoTokenizer.from_pretrained(path)
|
13 |
-
# try:
|
14 |
-
# config = AutoConfig.from_pretrained(path)
|
15 |
model = AutoModelForCausalLM.from_pretrained(
|
16 |
path,
|
17 |
-
# return_dict=True,
|
18 |
-
# load_in_8bit=True,
|
19 |
device_map="auto",
|
20 |
torch_dtype=torch.float16,
|
21 |
trust_remote_code=True,
|
22 |
)
|
23 |
-
# model.resize_token_embeddings(len(self.tokenizer))
|
24 |
-
# model = PeftModel.from_pretrained(model, path)
|
25 |
-
# except Exception:
|
26 |
-
# model = AutoModelForCausalLM.from_pretrained(
|
27 |
-
# path, device_map="auto", load_in_8bit=True, torch_dtype=torch.float16, trust_remote_code=True
|
28 |
-
# )
|
29 |
self.model = model
|
30 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
31 |
|
@@ -33,17 +21,18 @@ class EndpointHandler:
|
|
33 |
# process input
|
34 |
inputs = data.pop("inputs", data)
|
35 |
parameters = data.pop("parameters", None)
|
|
|
36 |
|
37 |
# preprocess
|
38 |
-
inputs = self.tokenizer(
|
39 |
|
40 |
# pass inputs with all kwargs in data
|
41 |
if parameters is not None:
|
42 |
-
outputs = self.model.generate(
|
43 |
else:
|
44 |
-
outputs = self.model.generate(
|
45 |
|
46 |
# postprocess the prediction
|
47 |
-
prediction = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
48 |
|
49 |
return [{"generated_text": prediction}]
|
|
|
1 |
from typing import Any, Dict
|
2 |
|
3 |
import torch
|
4 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
|
5 |
|
6 |
|
7 |
class EndpointHandler:
|
8 |
def __init__(self, path=""):
|
9 |
# load model and processor from path
|
10 |
self.tokenizer = AutoTokenizer.from_pretrained(path)
|
|
|
|
|
11 |
model = AutoModelForCausalLM.from_pretrained(
|
12 |
path,
|
|
|
|
|
13 |
device_map="auto",
|
14 |
torch_dtype=torch.float16,
|
15 |
trust_remote_code=True,
|
16 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
self.model = model
|
18 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
19 |
|
|
|
21 |
# process input
|
22 |
inputs = data.pop("inputs", data)
|
23 |
parameters = data.pop("parameters", None)
|
24 |
+
messages=[{ 'role': 'user', 'content': inputs}]
|
25 |
|
26 |
# preprocess
|
27 |
+
inputs = self.tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(self.device)
|
28 |
|
29 |
# pass inputs with all kwargs in data
|
30 |
if parameters is not None:
|
31 |
+
outputs = self.model.generate(inputs, num_return_sequences=1, eos_token_id=self.tokenizer.eos_token_id, **parameters) #, max_new_tokens=880
|
32 |
else:
|
33 |
+
outputs = self.model.generate(inputs, num_return_sequences=1, eos_token_id=self.tokenizer.eos_token_id) #, max_new_tokens=880
|
34 |
|
35 |
# postprocess the prediction
|
36 |
+
prediction = self.tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)
|
37 |
|
38 |
return [{"generated_text": prediction}]
|