{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f6c1dfcb640>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 5013504, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1694627834360480044, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALMZKj0cJGS87b++PaG1gT1JY4q9vg/0OwAAgD8AAIA/M1uRO/7HlD5OzBC92hfvvjUi8LyjJAY9AAAAAAAAAABmpXq9pWoOPutvQL3iDse+8/EVvvNMBbwAAAAAAAAAAFr5QD7vc48/qxbhPi9BF7/mD8c+OuswPgAAAAAAAAAAgOIvvVsCkbw2PQA+SoRkuFt3qr2aFaK9AACAPwAAgD8A+Dm8gz0vvNBVMTy+v4o8FrWQvSaSZT0AAIA/AACAP5qZHjoMxn4+IdevPa3wy74yc8Y9wC4vPQAAAAAAAAAAmu03vKB0uD9xXLu+xi7XPpHR7jsyxKI7AAAAAAAAAADNsIY9SGWdur8HiLwqaM22t+oEu9pVNzYAAIA/AAAAAJpN8T3+aJw/rPnLPodPGb9FHoc+BeknPgAAAAAAAAAAGnwYvs+VdT+NABS+Pt7tvli6pr5RohQ7AAAAAAAAAABmDSg9p+p0P16ncz1NyhK/oqEJPnNaWT0AAAAAAAAAAABEiTvhWv+6sUUivDEJjTyFfrs7TnN0vQAAgD8AAIA/ZsxaPBQ0lLq0lJ8z+eVzLz4EHLmuKrGzAACAPwAAgD8ATAI9K+iHPex0Ob7BlK2+2NWIvuZWmj0AAAAAAAAAAM3757w6yZc/jZO2vQ1kJb/NHEq9rawMvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWV4QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG7JB8QZn+SMAWyUS7mMAXSUR0CjM/6q0dBCdX2UKGgGR0Bv/P4wh4dIaAdLzWgIR0CjNAhF3IMjdX2UKGgGR0Bxwdd9lVcVaAdLv2gIR0CjNAznied1dX2UKGgGR0ByfTcYZVGTaAdL5GgIR0CjNDTN2TxHdX2UKGgGR0BxIkvboKUnaAdLz2gIR0CjNGObI91VdX2UKGgGR0BzouRfWtlqaAdLw2gIR0CjNILx7RfGdX2UKGgGR0Bw6PY9Pk7waAdL1GgIR0CjNIS/9Hc2dX2UKGgGR0BwCl/H5rP/aAdLxmgIR0CjNKvcrRShdX2UKGgGR0BzsD7rLQokaAdL12gIR0CjNLni3ocJdX2UKGgGR0BMz3xvvSc9aAdLgWgIR0CjNL0f5k9VdX2UKGgGR0BwxIWsRxtIaAdLz2gIR0CjNL0Sh8IBdX2UKGgGR0By+3EMspXqaAdNnwNoCEdAozTG9lEqlXV9lChoBkdAUafBguyu6mgHS6poCEdAozTI66reZXV9lChoBkdAcX8FR51Ng2gHS91oCEdAozTpCF9KEnV9lChoBkdAcawnlGPPs2gHS99oCEdAozUBGFzuGHV9lChoBkdAcdvxFy7wrmgHS69oCEdAozUQAn2IwnV9lChoBkdAc8JjMV1wHmgHS9poCEdAozUVHhCMP3V9lChoBkdAcpWCjUNKAmgHS8NoCEdAozU5InSfDnV9lChoBkdAcwHnf2saKmgHS99oCEdAozVq9M9KVnV9lChoBkdAcupUJv5xi2gHS+NoCEdAozWhCdBjWnV9lChoBkdAckTuZCv5g2gHS9ZoCEdAozXBH09QoHV9lChoBkdAc9jotL+PzWgHS85oCEdAoz0GzjWCmXV9lChoBkdAcf7qjJuEVWgHS9toCEdAoz0bst03fnV9lChoBkdAcFjwLE1l5GgHS85oCEdAoz0r3RG+bnV9lChoBkdAcN663RXwLGgHS8VoCEdAoz0tjVhCt3V9lChoBkdAcdpXkYGdJGgHS8FoCEdAoz0xcxCY1HV9lChoBkdAcb1EzfrKNmgHS89oCEdAoz06I1tO23V9lChoBkdAcb2nssxwhmgHS9JoCEdAoz1Lq0MPSXV9lChoBkdAcasDjBEa2mgHS9xoCEdAoz1S5y2hI3V9lChoBkdAcHW8Lronr2gHS95oCEdAoz1+wJPZZnV9lChoBkdAcWDlHBk7OmgHS89oCEdAoz2YgJTl1nV9lChoBkdAc27q0tyxRmgHS99oCEdAoz2btw71ZnV9lChoBkdAcosAGjbi62gHS8RoCEdAoz2q7NB4U3V9lChoBkdAcc0UdJaq0mgHS95oCEdAoz2qlJpWWHV9lChoBkdAcfX+m3vx6WgHS7ZoCEdAoz356OYIB3V9lChoBkdAcjAf+0gKW2gHS+RoCEdAoz4OiN83M3V9lChoBkdAcx9u3MINVmgHS8hoCEdAoz4xQDV6NXV9lChoBkdAcaYTUy57PmgHS7JoCEdAoz5GCqZMMHV9lChoBkdAcviDrqt5lmgHS8toCEdAoz5L6zmfXnV9lChoBkdAdCrTfBN21WgHS7ZoCEdAoz5a+vhZQ3V9lChoBkdAcD7eKsMiKWgHS8ZoCEdAoz5lqcmShnV9lChoBkdAcwHF2V3Ux2gHS8xoCEdAoz6OY+jdpXV9lChoBkdAcJk7Xg9/0GgHS65oCEdAoz6Vh7Vrh3V9lChoBkdAcL0sKsuFpWgHS9RoCEdAoz6j433pOnV9lChoBkdAct8WrOqvNmgHS/poCEdAoz6r+irT6XV9lChoBkdAcZ5BvaURnWgHS71oCEdAoz7Id0aIe3V9lChoBkdAc0T4QSSNfmgHS8BoCEdAoz7L4Hoou3V9lChoBkdAcn1iAUcn3WgHS8poCEdAoz7rqptJnXV9lChoBkdAbjVjNpudgGgHS9poCEdAoz8DMaCL/HV9lChoBkdAcBsgxagVXWgHS9ZoCEdAoz9OqcVgyHV9lChoBkdAcZEASnLq2WgHS7ZoCEdAoz9nldTo+3V9lChoBkdAcLQO3DvVmWgHS7hoCEdAoz9ujua4MHV9lChoBkdAcSKcL0BfbGgHS8xoCEdAoz93HaN+9nV9lChoBkdAc7ngRbr1NGgHS/VoCEdAoz+WOGTLXHV9lChoBkdAc4gbrTpgTmgHS9BoCEdAoz+lkhA4XHV9lChoBkdAcclN5MURF2gHS+RoCEdAoz/TCcf/3nV9lChoBkdAc+ia72+PBGgHS81oCEdAoz/WXmeUZHV9lChoBkdAcCPrtE5QxmgHS7NoCEdAoz/n029+PXV9lChoBkdAcYLhttQ9BGgHS9JoCEdAoz/zGFSKnHV9lChoBkdAbq681XNkfGgHS79oCEdAoz/9yBClanV9lChoBkdAcaMDArQPZ2gHS9poCEdAo0AJE8aGYnV9lChoBkdAcTqF5v99+mgHS+5oCEdAo0ATgydnTXV9lChoBkdAcGyWYF7laWgHS7ZoCEdAo0ArPrv9cnV9lChoBkdAc0mW7OE/S2gHS9BoCEdAo0A8eEIw/XV9lChoBkdAcBCH446wMmgHS7poCEdAo0CYVqN6xHV9lChoBkdAcPxoP07KaGgHS9poCEdAo0C3KfWc0HV9lChoBkdAcDuP8yeqaWgHS8doCEdAo0C48Md92HV9lChoBkdAbh63ZPEbYWgHS8doCEdAo0DgfwI+n3V9lChoBkdAcJrEVWS2Y2gHS8poCEdAo0D1nRLK3nV9lChoBkdAcnwphF3IMmgHS+9oCEdAo0EDPKMefnV9lChoBkdAcSMMN+b3GmgHS8loCEdAo0EijHn2ZnV9lChoBkdAcQTNEw35vmgHS7ZoCEdAo0Ew9FF2FHV9lChoBkdAc0LqMFUyYWgHS8doCEdAo0FCBun/DXV9lChoBkdAc7skXDWK/GgHS7xoCEdAo0FGC9RJmXV9lChoBkdAcumgW8AaN2gHS99oCEdAo0Ff+4smOXV9lChoBkdAcSkMgU1yemgHS+loCEdAo0FfIXCTEHV9lChoBkdAbqDLGrCFbmgHS8BoCEdAo0FwffXPJXV9lChoBkdAc9/PUrkKeGgHS9xoCEdAo0GCz/p+t3V9lChoBkdAcrLOKwY+CGgHS+NoCEdAo0G2vr4WUXV9lChoBkdAckqv8ZUDMmgHS8toCEdAo0HttfoicHV9lChoBkdARX/rjYI0ImgHS5NoCEdAo0H4vUSZjXV9lChoBkdAdD84TK1XvGgHS8JoCEdAo0H6VII4VHV9lChoBkdAcHtJLuhK2GgHS8ZoCEdAo0ICOcUdrHV9lChoBkdAb2kHFglWwWgHS8JoCEdAo0Ih4KQaJnV9lChoBkdAcfFt65XlsGgHS8loCEdAo0JBAUtZm3V9lChoBkdASR6bDuSfUWgHS4xoCEdAo0JTQw9JSXV9lChoBkdAcZQjh1klNWgHS7doCEdAo0JwA80UGnV9lChoBkdAcISel9BrvmgHS9BoCEdAo0J7NjbzsnV9lChoBkdAcOC4LCvX9WgHS75oCEdAo0J+Mhouf3V9lChoBkdAcM/sPrfLtGgHS9hoCEdAo0KTgdfb9XV9lChoBkdAcqdIqbz9TGgHS9BoCEdAo0Kxv99+gHV9lChoBkdAc82lGwzLwGgHS+NoCEdAo0LUSK3uu3V9lChoBkdAckO/XXiBG2gHS9BoCEdAo0LbtzCDVnV9lChoBkdAbzeR0U47zWgHS71oCEdAo0LxGSZBs3V9lChoBkdAcz/EeQuEmWgHS8ZoCEdAo0NH38GcF3V9lChoBkdAcr+xgy/KyWgHS9poCEdAo0NeCI1tO3V9lChoBkdAdBTeDWbw0GgHS9NoCEdAo0NdsBQvYnV9lChoBkdAcLQ3vhIe5mgHS9VoCEdAo0Np2wFC9nV9lChoBkdAbywy6+WWyGgHS8JoCEdAo0Nro4dZJXV9lChoBkdAcqr2gnMMZ2gHS8ZoCEdAo0OS15Sm7HVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1224, "observation_space": {":type:": "", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWV1wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUi9ob21lL2FydHlvbS8ubG9jYWwvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjFIvaG9tZS9hcnR5b20vLmxvY2FsL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWV1wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUi9ob21lL2FydHlvbS8ubG9jYWwvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjFIvaG9tZS9hcnR5b20vLmxvY2FsL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.90.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Fri Jan 27 02:56:13 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu117", "GPU Enabled": "True", "Numpy": "1.24.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1"}}