artbreguez commited on
Commit
44ccadb
1 Parent(s): f832092

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 257.30 +/- 20.93
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f14dfbed3a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f14dfbed430>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f14dfbed4c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f14dfbed550>", "_build": "<function ActorCriticPolicy._build at 0x7f14dfbed5e0>", "forward": "<function ActorCriticPolicy.forward at 0x7f14dfbed670>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f14dfbed700>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f14dfbed790>", "_predict": "<function ActorCriticPolicy._predict at 0x7f14dfbed820>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f14dfbed8b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f14dfbed940>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f14dfbed9d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f14dfbec980>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679777603320683921, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjkvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjkvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAACtJb0pkCm6vuoQOyV2UjZuWa26Dm0mugAAgD8AAIA/ANg7PFwzCbreskE5g+ndNDkv3bpdY2a4AACAPwAAgD9mrps79vQFuvo6hjlRxJSzioGNu/XvnLgAAIA/AACAP2Y5Zz1cPC28mSGVvHZ8ejyUlJG9MxZRPQAAgD8AAIA/Wo9QPtTYRj5iFTW+01EkvuLEVz14Od28AAAAAAAAAADm4cM99rRXurNKs7ueLCo4ot7HufW5prYAAAAAAACAPzPjVbxcWzu6+FygOgDxkTU9nM+64RS+uQAAgD8AAIA/zdu1PPYoGro8+Y657zUntdc5cTseT6Y4AACAPwAAgD8zc0c6jx5nuvcoGzmLspc0PfXAOhBTMrgAAIA/AACAPzoHSb4hIys/kjm7PQKvo76HKNe9RYnQPQAAAAAAAAAArXFgPshRdD8Y+VE+NZzKvipgdT2yPDq8AAAAAAAAAADNUEO8KXR1uhUaBLlm1JqzeNENuyEoFzgAAIA/AACAPyBFLD44+uC7JFOYul72QjgDL1e9t0W5OQAAgD8AAIA/zemovFybcLq/GkI6rWg1NRgZcLpzaWO5AACAPwAAgD8zm5I8edmVPzsRRj36euK+jjthvU2WgzwAAAAAAAAAAPNmHz4VF0w+pu5tvv+/Hb5/UE+5t1YCvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIbsDnhxFgZECUhpRSlIwBbJRN6AOMAXSUR0CQOHUEgW8AdX2UKGgGaAloD0MIJcreUk5dYkCUhpRSlGgVTegDaBZHQJA9LdsSCe51fZQoaAZoCWgPQwiL4H8r2aVkQJSGlFKUaBVN6ANoFkdAkD5/LPldT3V9lChoBmgJaA9DCLyxoDCo8mdAlIaUUpRoFU3oA2gWR0CQQjeDWbw0dX2UKGgGaAloD0MI1hpK7UU5ZkCUhpRSlGgVTegDaBZHQJBEJnyup0h1fZQoaAZoCWgPQwgr9wKzwutkQJSGlFKUaBVN6ANoFkdAkESGnO0LMXV9lChoBmgJaA9DCJZCIJe4KmJAlIaUUpRoFU3oA2gWR0CQTPOby6MBdX2UKGgGaAloD0MIL1BSYIECZUCUhpRSlGgVTegDaBZHQJBNQW+GoJl1fZQoaAZoCWgPQwiXNhyWBqxAQJSGlFKUaBVL9mgWR0CQTlNiYsundX2UKGgGaAloD0MI6s4Tz9lfYECUhpRSlGgVTegDaBZHQJBSgJb+tKZ1fZQoaAZoCWgPQwhM/bypyKNhQJSGlFKUaBVN6ANoFkdAkG29Vmz0H3V9lChoBmgJaA9DCDZYOEnzbURAlIaUUpRoFUu8aBZHQJBurN+so2J1fZQoaAZoCWgPQwgeFf93xOVjQJSGlFKUaBVN6ANoFkdAkG7oDTz/ZXV9lChoBmgJaA9DCM0f09o0XWNAlIaUUpRoFU3oA2gWR0CQb1kf9xZMdX2UKGgGaAloD0MID9Qpj+4QZUCUhpRSlGgVTegDaBZHQJBv3XJ5miB1fZQoaAZoCWgPQwikVS3pKFlmQJSGlFKUaBVN6ANoFkdAkHUZGe+VT3V9lChoBmgJaA9DCKEwKNNoZWJAlIaUUpRoFU3oA2gWR0CQdyY51eSkdX2UKGgGaAloD0MITYV4JN62Y0CUhpRSlGgVTegDaBZHQJB3XuNPxhF1fZQoaAZoCWgPQwiscwzI3hFhQJSGlFKUaBVN6ANoFkdAkIG+fEn9enV9lChoBmgJaA9DCCUfuwsU3mdAlIaUUpRoFU3oA2gWR0CQhyoduHerdX2UKGgGaAloD0MIs7eU88VMY0CUhpRSlGgVTegDaBZHQJCIrrdFfAt1fZQoaAZoCWgPQwidEDroEjFlQJSGlFKUaBVN6ANoFkdAkJF8jzI3i3V9lChoBmgJaA9DCJwzorS3C2NAlIaUUpRoFU3oA2gWR0CQkhqM3qA0dX2UKGgGaAloD0MIvaseMA8jZECUhpRSlGgVTegDaBZHQJCf0gSvkil1fZQoaAZoCWgPQwgjE/BrpG5kQJSGlFKUaBVN6ANoFkdAkKEyQT238XV9lChoBmgJaA9DCEVJSKTt/mJAlIaUUpRoFU3oA2gWR0CQpQliz9jxdX2UKGgGaAloD0MIMWE0K1twYUCUhpRSlGgVTegDaBZHQJC8R7ngYP51fZQoaAZoCWgPQwirsYS1sUtiQJSGlFKUaBVN6ANoFkdAkL1tO/L1VnV9lChoBmgJaA9DCLBXWHA/el1AlIaUUpRoFU3oA2gWR0CQvbVE/jbSdX2UKGgGaAloD0MIveDTnDyfZ0CUhpRSlGgVTegDaBZHQJC+PhuO0b91fZQoaAZoCWgPQwi7KlCLQWBmQJSGlFKUaBVN6ANoFkdAkL7xXCCSR3V9lChoBmgJaA9DCE4pr5VQN2ZAlIaUUpRoFU3oA2gWR0CQxjxsEaESdX2UKGgGaAloD0MIfgIoRpZCY0CUhpRSlGgVTegDaBZHQJDJaqp97Wx1fZQoaAZoCWgPQwhoJEIjWNRlQJSGlFKUaBVN6ANoFkdAkMm/9tMwlHV9lChoBmgJaA9DCPDAAMKHgW9AlIaUUpRoFU1BA2gWR0CQy3dhRZU2dX2UKGgGaAloD0MIp8zNN6IhT0CUhpRSlGgVS/poFkdAkNZ2+PBBRnV9lChoBmgJaA9DCEmil1GsHmBAlIaUUpRoFU3oA2gWR0CQ2oS8J2MbdX2UKGgGaAloD0MII79+iA1PZkCUhpRSlGgVTegDaBZHQJDbwiaAnUl1fZQoaAZoCWgPQwjh1AeSdzZuQJSGlFKUaBVN+wJoFkdAkN6IQnQY13V9lChoBmgJaA9DCA2pongVr2RAlIaUUpRoFU3oA2gWR0CQ4PTXrdFfdX2UKGgGaAloD0MIwvaTMb4vaECUhpRSlGgVTegDaBZHQJDhRw2l2vB1fZQoaAZoCWgPQwiJKZFELwNHQJSGlFKUaBVNHAFoFkdAkOfThYNiIHV9lChoBmgJaA9DCJsDBHN0QGVAlIaUUpRoFU3oA2gWR0CQ6oChew9rdX2UKGgGaAloD0MIHqUSntDrcECUhpRSlGgVTS8BaBZHQJDsrOeJ53V1fZQoaAZoCWgPQwilpIehVdBgQJSGlFKUaBVN6ANoFkdAkO2pEUj9oHV9lChoBmgJaA9DCKfK94xE5V9AlIaUUpRoFU3oA2gWR0CQ8Tb+98JEdX2UKGgGaAloD0MIJsXHJ2TlZUCUhpRSlGgVTegDaBZHQJEIKwzLwF11fZQoaAZoCWgPQwixpUdTPT9jQJSGlFKUaBVN6ANoFkdAkQiBf4REnnV9lChoBmgJaA9DCMzriEM24WNAlIaUUpRoFU3oA2gWR0CRCSZ1V5rydX2UKGgGaAloD0MI6MByhAycYUCUhpRSlGgVTegDaBZHQJEKBNwiqyZ1fZQoaAZoCWgPQwia6sn8I+xiQJSGlFKUaBVN6ANoFkdAkRMFS0jTrnV9lChoBmgJaA9DCAGiYMaUR2FAlIaUUpRoFU3oA2gWR0CRE0E1VHWjdX2UKGgGaAloD0MILuV8sXc6ZECUhpRSlGgVTegDaBZHQJEUgZCOWB11fZQoaAZoCWgPQwg2H9eGCj5kQJSGlFKUaBVN6ANoFkdAkRzbTUiIL3V9lChoBmgJaA9DCDYjg9zFA2ZAlIaUUpRoFU3oA2gWR0CRIrX+VC5VdX2UKGgGaAloD0MIGR2QhH3kXUCUhpRSlGgVTegDaBZHQJEoeSJTER91fZQoaAZoCWgPQwg5JSAm4ZtoQJSGlFKUaBVN6ANoFkdAkSjV+qioKnV9lChoBmgJaA9DCPuvc9PmUmNAlIaUUpRoFU3oA2gWR0CRL+DQ7cO9dX2UKGgGaAloD0MIxhaCHJQ/ZECUhpRSlGgVTegDaBZHQJEy9ZmqYJF1fZQoaAZoCWgPQwhuNeuMb8NjQJSGlFKUaBVN6ANoFkdAkTVP9Hc1wnV9lChoBmgJaA9DCKH18GWiiGJAlIaUUpRoFU3oA2gWR0CRNnSdvsJIdX2UKGgGaAloD0MImDCale1WZECUhpRSlGgVTegDaBZHQJE7w4bS7Xh1fZQoaAZoCWgPQwi+Zrls9AxjQJSGlFKUaBVN6ANoFkdAkT0x/iHZb3V9lChoBmgJaA9DCHo4gem0RGFAlIaUUpRoFU3oA2gWR0CRPYhi9ZiedX2UKGgGaAloD0MIa0QwDq6UYECUhpRSlGgVTegDaBZHQJE+LLs8gZF1fZQoaAZoCWgPQwiiz0cZ8YVlQJSGlFKUaBVN6ANoFkdAkVTtix3V1HV9lChoBmgJaA9DCLw9CAH5fGRAlIaUUpRoFU3oA2gWR0CRXFKWLP2PdX2UKGgGaAloD0MIehwG81cmZ0CUhpRSlGgVTegDaBZHQJFckZZSvTx1fZQoaAZoCWgPQwiiDcAGxGZpQJSGlFKUaBVN6ANoFkdAkV3Mm0E5hnV9lChoBmgJaA9DCKpDboYbYklAlIaUUpRoFU0MAWgWR0CRXwZTyauwdX2UKGgGaAloD0MIWvCir6AzZECUhpRSlGgVTegDaBZHQJFmES00FbF1fZQoaAZoCWgPQwhdo+VAD1xkQJSGlFKUaBVN6ANoFkdAkWvF5nlGPXV9lChoBmgJaA9DCNgN2xblSGxAlIaUUpRoFU1dAWgWR0CRbZ7Rv3rVdX2UKGgGaAloD0MIgCvZsZGVaECUhpRSlGgVTegDaBZHQJFx19ph4MZ1fZQoaAZoCWgPQwiuLTwvFdhiQJSGlFKUaBVN6ANoFkdAkXJg+t8uz3V9lChoBmgJaA9DCNvebkmO1WdAlIaUUpRoFU3oA2gWR0CRfJzPKMefdX2UKGgGaAloD0MIX7NcNnqTcUCUhpRSlGgVTSoBaBZHQJF/pQGfPHF1fZQoaAZoCWgPQwj0p43qdANkQJSGlFKUaBVN6ANoFkdAkYEUF8ohIXV9lChoBmgJaA9DCJtz8ExoqmNAlIaUUpRoFU3oA2gWR0CRg9QokRjCdX2UKGgGaAloD0MInBcnvlqDYUCUhpRSlGgVTegDaBZHQJGE0s3AEdN1fZQoaAZoCWgPQwhsBrggW4djQJSGlFKUaBVN6ANoFkdAkYgF4xDb8HV9lChoBmgJaA9DCBDOp47Vp2FAlIaUUpRoFU3oA2gWR0CRiRBSUC7sdX2UKGgGaAloD0MI0Jfe/tx8ZECUhpRSlGgVTegDaBZHQJGJfeQ+2Vp1fZQoaAZoCWgPQwh0m3CvTFlmQJSGlFKUaBVN6ANoFkdAkYoL5ylvZXV9lChoBmgJaA9DCBebVgoBNHJAlIaUUpRoFU1PAWgWR0CRomQF9roGdX2UKGgGaAloD0MID2Q9tfqnaECUhpRSlGgVTegDaBZHQJGlFxLkCFN1fZQoaAZoCWgPQwjohqbs9JdnQJSGlFKUaBVN6ANoFkdAkaZb/wRXfnV9lChoBmgJaA9DCG/XS1MElkZAlIaUUpRoFUvtaBZHQJGm2LAHmih1fZQoaAZoCWgPQwimnC/23v9lQJSGlFKUaBVN6ANoFkdAkaedM0xdp3V9lChoBmgJaA9DCNREn4+yQGVAlIaUUpRoFU3oA2gWR0CRsCYNRWLhdX2UKGgGaAloD0MIm+RH/ApaZECUhpRSlGgVTegDaBZHQJG7YNx2jfx1fZQoaAZoCWgPQwgT1sbYiSRkQJSGlFKUaBVN6ANoFkdAkcAaQzUI9nV9lChoBmgJaA9DCD55WKi1PmRAlIaUUpRoFU3oA2gWR0CRwH1gpjMFdX2UKGgGaAloD0MIkjzX92FZZUCUhpRSlGgVTegDaBZHQJHICquKXOZ1fZQoaAZoCWgPQwiB6bRug4dlQJSGlFKUaBVN6ANoFkdAkcronrpqynV9lChoBmgJaA9DCDLJyFnY5WJAlIaUUpRoFU3oA2gWR0CRzPhzvJA/dX2UKGgGaAloD0MI+YOB517NZECUhpRSlGgVTegDaBZHQJHN7wWnCO51fZQoaAZoCWgPQwiJ00m2uipiQJSGlFKUaBVN6ANoFkdAkdFPMGHHm3V9lChoBmgJaA9DCIjVH2GYd2NAlIaUUpRoFU3oA2gWR0CR0mZUkv9MdX2UKGgGaAloD0MISn1Z2qnHZkCUhpRSlGgVTegDaBZHQJHTe4Vh1DB1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjkvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjkvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8176536f1def04b5668e65eb24d1c6f9e7e7074fbaf353019eb23c9977505d1a
3
+ size 147417
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f14dfbed3a0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f14dfbed430>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f14dfbed4c0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f14dfbed550>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f14dfbed5e0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f14dfbed670>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f14dfbed700>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f14dfbed790>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f14dfbed820>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f14dfbed8b0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f14dfbed940>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f14dfbed9d0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f14dfbec980>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1679777603320683921,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjkvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjkvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAACtJb0pkCm6vuoQOyV2UjZuWa26Dm0mugAAgD8AAIA/ANg7PFwzCbreskE5g+ndNDkv3bpdY2a4AACAPwAAgD9mrps79vQFuvo6hjlRxJSzioGNu/XvnLgAAIA/AACAP2Y5Zz1cPC28mSGVvHZ8ejyUlJG9MxZRPQAAgD8AAIA/Wo9QPtTYRj5iFTW+01EkvuLEVz14Od28AAAAAAAAAADm4cM99rRXurNKs7ueLCo4ot7HufW5prYAAAAAAACAPzPjVbxcWzu6+FygOgDxkTU9nM+64RS+uQAAgD8AAIA/zdu1PPYoGro8+Y657zUntdc5cTseT6Y4AACAPwAAgD8zc0c6jx5nuvcoGzmLspc0PfXAOhBTMrgAAIA/AACAPzoHSb4hIys/kjm7PQKvo76HKNe9RYnQPQAAAAAAAAAArXFgPshRdD8Y+VE+NZzKvipgdT2yPDq8AAAAAAAAAADNUEO8KXR1uhUaBLlm1JqzeNENuyEoFzgAAIA/AACAPyBFLD44+uC7JFOYul72QjgDL1e9t0W5OQAAgD8AAIA/zemovFybcLq/GkI6rWg1NRgZcLpzaWO5AACAPwAAgD8zm5I8edmVPzsRRj36euK+jjthvU2WgzwAAAAAAAAAAPNmHz4VF0w+pu5tvv+/Hb5/UE+5t1YCvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIbsDnhxFgZECUhpRSlIwBbJRN6AOMAXSUR0CQOHUEgW8AdX2UKGgGaAloD0MIJcreUk5dYkCUhpRSlGgVTegDaBZHQJA9LdsSCe51fZQoaAZoCWgPQwiL4H8r2aVkQJSGlFKUaBVN6ANoFkdAkD5/LPldT3V9lChoBmgJaA9DCLyxoDCo8mdAlIaUUpRoFU3oA2gWR0CQQjeDWbw0dX2UKGgGaAloD0MI1hpK7UU5ZkCUhpRSlGgVTegDaBZHQJBEJnyup0h1fZQoaAZoCWgPQwgr9wKzwutkQJSGlFKUaBVN6ANoFkdAkESGnO0LMXV9lChoBmgJaA9DCJZCIJe4KmJAlIaUUpRoFU3oA2gWR0CQTPOby6MBdX2UKGgGaAloD0MIL1BSYIECZUCUhpRSlGgVTegDaBZHQJBNQW+GoJl1fZQoaAZoCWgPQwiXNhyWBqxAQJSGlFKUaBVL9mgWR0CQTlNiYsundX2UKGgGaAloD0MI6s4Tz9lfYECUhpRSlGgVTegDaBZHQJBSgJb+tKZ1fZQoaAZoCWgPQwhM/bypyKNhQJSGlFKUaBVN6ANoFkdAkG29Vmz0H3V9lChoBmgJaA9DCDZYOEnzbURAlIaUUpRoFUu8aBZHQJBurN+so2J1fZQoaAZoCWgPQwgeFf93xOVjQJSGlFKUaBVN6ANoFkdAkG7oDTz/ZXV9lChoBmgJaA9DCM0f09o0XWNAlIaUUpRoFU3oA2gWR0CQb1kf9xZMdX2UKGgGaAloD0MID9Qpj+4QZUCUhpRSlGgVTegDaBZHQJBv3XJ5miB1fZQoaAZoCWgPQwikVS3pKFlmQJSGlFKUaBVN6ANoFkdAkHUZGe+VT3V9lChoBmgJaA9DCKEwKNNoZWJAlIaUUpRoFU3oA2gWR0CQdyY51eSkdX2UKGgGaAloD0MITYV4JN62Y0CUhpRSlGgVTegDaBZHQJB3XuNPxhF1fZQoaAZoCWgPQwiscwzI3hFhQJSGlFKUaBVN6ANoFkdAkIG+fEn9enV9lChoBmgJaA9DCCUfuwsU3mdAlIaUUpRoFU3oA2gWR0CQhyoduHerdX2UKGgGaAloD0MIs7eU88VMY0CUhpRSlGgVTegDaBZHQJCIrrdFfAt1fZQoaAZoCWgPQwidEDroEjFlQJSGlFKUaBVN6ANoFkdAkJF8jzI3i3V9lChoBmgJaA9DCJwzorS3C2NAlIaUUpRoFU3oA2gWR0CQkhqM3qA0dX2UKGgGaAloD0MIvaseMA8jZECUhpRSlGgVTegDaBZHQJCf0gSvkil1fZQoaAZoCWgPQwgjE/BrpG5kQJSGlFKUaBVN6ANoFkdAkKEyQT238XV9lChoBmgJaA9DCEVJSKTt/mJAlIaUUpRoFU3oA2gWR0CQpQliz9jxdX2UKGgGaAloD0MIMWE0K1twYUCUhpRSlGgVTegDaBZHQJC8R7ngYP51fZQoaAZoCWgPQwirsYS1sUtiQJSGlFKUaBVN6ANoFkdAkL1tO/L1VnV9lChoBmgJaA9DCLBXWHA/el1AlIaUUpRoFU3oA2gWR0CQvbVE/jbSdX2UKGgGaAloD0MIveDTnDyfZ0CUhpRSlGgVTegDaBZHQJC+PhuO0b91fZQoaAZoCWgPQwi7KlCLQWBmQJSGlFKUaBVN6ANoFkdAkL7xXCCSR3V9lChoBmgJaA9DCE4pr5VQN2ZAlIaUUpRoFU3oA2gWR0CQxjxsEaESdX2UKGgGaAloD0MIfgIoRpZCY0CUhpRSlGgVTegDaBZHQJDJaqp97Wx1fZQoaAZoCWgPQwhoJEIjWNRlQJSGlFKUaBVN6ANoFkdAkMm/9tMwlHV9lChoBmgJaA9DCPDAAMKHgW9AlIaUUpRoFU1BA2gWR0CQy3dhRZU2dX2UKGgGaAloD0MIp8zNN6IhT0CUhpRSlGgVS/poFkdAkNZ2+PBBRnV9lChoBmgJaA9DCEmil1GsHmBAlIaUUpRoFU3oA2gWR0CQ2oS8J2MbdX2UKGgGaAloD0MII79+iA1PZkCUhpRSlGgVTegDaBZHQJDbwiaAnUl1fZQoaAZoCWgPQwjh1AeSdzZuQJSGlFKUaBVN+wJoFkdAkN6IQnQY13V9lChoBmgJaA9DCA2pongVr2RAlIaUUpRoFU3oA2gWR0CQ4PTXrdFfdX2UKGgGaAloD0MIwvaTMb4vaECUhpRSlGgVTegDaBZHQJDhRw2l2vB1fZQoaAZoCWgPQwiJKZFELwNHQJSGlFKUaBVNHAFoFkdAkOfThYNiIHV9lChoBmgJaA9DCJsDBHN0QGVAlIaUUpRoFU3oA2gWR0CQ6oChew9rdX2UKGgGaAloD0MIHqUSntDrcECUhpRSlGgVTS8BaBZHQJDsrOeJ53V1fZQoaAZoCWgPQwilpIehVdBgQJSGlFKUaBVN6ANoFkdAkO2pEUj9oHV9lChoBmgJaA9DCKfK94xE5V9AlIaUUpRoFU3oA2gWR0CQ8Tb+98JEdX2UKGgGaAloD0MIJsXHJ2TlZUCUhpRSlGgVTegDaBZHQJEIKwzLwF11fZQoaAZoCWgPQwixpUdTPT9jQJSGlFKUaBVN6ANoFkdAkQiBf4REnnV9lChoBmgJaA9DCMzriEM24WNAlIaUUpRoFU3oA2gWR0CRCSZ1V5rydX2UKGgGaAloD0MI6MByhAycYUCUhpRSlGgVTegDaBZHQJEKBNwiqyZ1fZQoaAZoCWgPQwia6sn8I+xiQJSGlFKUaBVN6ANoFkdAkRMFS0jTrnV9lChoBmgJaA9DCAGiYMaUR2FAlIaUUpRoFU3oA2gWR0CRE0E1VHWjdX2UKGgGaAloD0MILuV8sXc6ZECUhpRSlGgVTegDaBZHQJEUgZCOWB11fZQoaAZoCWgPQwg2H9eGCj5kQJSGlFKUaBVN6ANoFkdAkRzbTUiIL3V9lChoBmgJaA9DCDYjg9zFA2ZAlIaUUpRoFU3oA2gWR0CRIrX+VC5VdX2UKGgGaAloD0MIGR2QhH3kXUCUhpRSlGgVTegDaBZHQJEoeSJTER91fZQoaAZoCWgPQwg5JSAm4ZtoQJSGlFKUaBVN6ANoFkdAkSjV+qioKnV9lChoBmgJaA9DCPuvc9PmUmNAlIaUUpRoFU3oA2gWR0CRL+DQ7cO9dX2UKGgGaAloD0MIxhaCHJQ/ZECUhpRSlGgVTegDaBZHQJEy9ZmqYJF1fZQoaAZoCWgPQwhuNeuMb8NjQJSGlFKUaBVN6ANoFkdAkTVP9Hc1wnV9lChoBmgJaA9DCKH18GWiiGJAlIaUUpRoFU3oA2gWR0CRNnSdvsJIdX2UKGgGaAloD0MImDCale1WZECUhpRSlGgVTegDaBZHQJE7w4bS7Xh1fZQoaAZoCWgPQwi+Zrls9AxjQJSGlFKUaBVN6ANoFkdAkT0x/iHZb3V9lChoBmgJaA9DCHo4gem0RGFAlIaUUpRoFU3oA2gWR0CRPYhi9ZiedX2UKGgGaAloD0MIa0QwDq6UYECUhpRSlGgVTegDaBZHQJE+LLs8gZF1fZQoaAZoCWgPQwiiz0cZ8YVlQJSGlFKUaBVN6ANoFkdAkVTtix3V1HV9lChoBmgJaA9DCLw9CAH5fGRAlIaUUpRoFU3oA2gWR0CRXFKWLP2PdX2UKGgGaAloD0MIehwG81cmZ0CUhpRSlGgVTegDaBZHQJFckZZSvTx1fZQoaAZoCWgPQwiiDcAGxGZpQJSGlFKUaBVN6ANoFkdAkV3Mm0E5hnV9lChoBmgJaA9DCKpDboYbYklAlIaUUpRoFU0MAWgWR0CRXwZTyauwdX2UKGgGaAloD0MIWvCir6AzZECUhpRSlGgVTegDaBZHQJFmES00FbF1fZQoaAZoCWgPQwhdo+VAD1xkQJSGlFKUaBVN6ANoFkdAkWvF5nlGPXV9lChoBmgJaA9DCNgN2xblSGxAlIaUUpRoFU1dAWgWR0CRbZ7Rv3rVdX2UKGgGaAloD0MIgCvZsZGVaECUhpRSlGgVTegDaBZHQJFx19ph4MZ1fZQoaAZoCWgPQwiuLTwvFdhiQJSGlFKUaBVN6ANoFkdAkXJg+t8uz3V9lChoBmgJaA9DCNvebkmO1WdAlIaUUpRoFU3oA2gWR0CRfJzPKMefdX2UKGgGaAloD0MIX7NcNnqTcUCUhpRSlGgVTSoBaBZHQJF/pQGfPHF1fZQoaAZoCWgPQwj0p43qdANkQJSGlFKUaBVN6ANoFkdAkYEUF8ohIXV9lChoBmgJaA9DCJtz8ExoqmNAlIaUUpRoFU3oA2gWR0CRg9QokRjCdX2UKGgGaAloD0MInBcnvlqDYUCUhpRSlGgVTegDaBZHQJGE0s3AEdN1fZQoaAZoCWgPQwhsBrggW4djQJSGlFKUaBVN6ANoFkdAkYgF4xDb8HV9lChoBmgJaA9DCBDOp47Vp2FAlIaUUpRoFU3oA2gWR0CRiRBSUC7sdX2UKGgGaAloD0MI0Jfe/tx8ZECUhpRSlGgVTegDaBZHQJGJfeQ+2Vp1fZQoaAZoCWgPQwh0m3CvTFlmQJSGlFKUaBVN6ANoFkdAkYoL5ylvZXV9lChoBmgJaA9DCBebVgoBNHJAlIaUUpRoFU1PAWgWR0CRomQF9roGdX2UKGgGaAloD0MID2Q9tfqnaECUhpRSlGgVTegDaBZHQJGlFxLkCFN1fZQoaAZoCWgPQwjohqbs9JdnQJSGlFKUaBVN6ANoFkdAkaZb/wRXfnV9lChoBmgJaA9DCG/XS1MElkZAlIaUUpRoFUvtaBZHQJGm2LAHmih1fZQoaAZoCWgPQwimnC/23v9lQJSGlFKUaBVN6ANoFkdAkaedM0xdp3V9lChoBmgJaA9DCNREn4+yQGVAlIaUUpRoFU3oA2gWR0CRsCYNRWLhdX2UKGgGaAloD0MIm+RH/ApaZECUhpRSlGgVTegDaBZHQJG7YNx2jfx1fZQoaAZoCWgPQwgT1sbYiSRkQJSGlFKUaBVN6ANoFkdAkcAaQzUI9nV9lChoBmgJaA9DCD55WKi1PmRAlIaUUpRoFU3oA2gWR0CRwH1gpjMFdX2UKGgGaAloD0MIkjzX92FZZUCUhpRSlGgVTegDaBZHQJHICquKXOZ1fZQoaAZoCWgPQwiB6bRug4dlQJSGlFKUaBVN6ANoFkdAkcronrpqynV9lChoBmgJaA9DCDLJyFnY5WJAlIaUUpRoFU3oA2gWR0CRzPhzvJA/dX2UKGgGaAloD0MI+YOB517NZECUhpRSlGgVTegDaBZHQJHN7wWnCO51fZQoaAZoCWgPQwiJ00m2uipiQJSGlFKUaBVN6ANoFkdAkdFPMGHHm3V9lChoBmgJaA9DCIjVH2GYd2NAlIaUUpRoFU3oA2gWR0CR0mZUkv9MdX2UKGgGaAloD0MISn1Z2qnHZkCUhpRSlGgVTegDaBZHQJHTe4Vh1DB1ZS4="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjkvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjkvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:39b4757f2f24d70860c8272b534ed9ce113146b5e16b3d4835d858c795850061
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:692fb007429e4002945daa5214556b9436c620710386386b972be8c10143cbea
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (188 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 257.30182096160456, "std_reward": 20.926539620631505, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-25T21:15:51.860477"}